Fork me on GitHub

Teleport

Database Access with AWS ElastiCache and AWS MemoryDB for Redis

Improve

This guide will help you to:

  • Install Teleport 12.1.1.
  • Set up Teleport to access your ElastiCache and MemoryDB for Redis clusters.
  • Connect to your clusters through Teleport.
Teleport Database Access RDS Self-Hosted

Prerequisites

  • A running Teleport cluster. For details on how to set this up, see one of our Getting Started guides.

  • The tctl admin tool and tsh client tool version >= 12.1.1.

    tctl version

    Teleport v12.1.1 go1.19

    tsh version

    Teleport v12.1.1 go1.19

    See Installation for details.

  • A running Teleport cluster. For details on how to set this up, see our Enterprise Getting Started guide.

  • The Enterprise tctl admin tool and tsh client tool version >= 12.1.1, which you can download by visiting the customer portal.

    tctl version

    Teleport Enterprise v12.1.1 go1.19

    tsh version

    Teleport v12.1.1 go1.19

Cloud is not available for Teleport v.
Please use the latest version of Teleport Enterprise documentation.
  • AWS account with at least one ElastiCache or MemoryDB for Redis clusters In-transit encryption via (TLS) must be enabled.
  • Permissions to create and attach IAM policies.
  • redis-cli version 6.2 or newer installed and added to your system's PATH environment variable.
  • A host, e.g., an EC2 instance, where you will run the Teleport Database Service.

To connect to Teleport, log in to your cluster using tsh, then use tctl remotely:

tsh login --proxy=teleport.example.com [email protected]
tctl status

Cluster teleport.example.com

Version 12.1.1

CA pin sha256:abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678

You can run subsequent tctl commands in this guide on your local machine.

For full privileges, you can also run tctl commands on your Auth Service host.

To connect to Teleport, log in to your cluster using tsh, then use tctl remotely:

tsh login --proxy=myinstance.teleport.sh [email protected]
tctl status

Cluster myinstance.teleport.sh

Version 12.1.1

CA pin sha256:sha-hash-here

You must run subsequent tctl commands in this guide on your local machine.

Step 1/6. Create a Teleport user

Tip

To modify an existing user to provide access to the Database Access service, see Database Access Access Controls

Create a local Teleport user with the built-in access role:

tctl users add \ --roles=access \ --db-users=\* \ --db-names=\* \ alice
FlagDescription
--rolesList of roles to assign to the user. The builtin access role allows them to connect to any database server registered with Teleport.
--db-usersList of database usernames the user will be allowed to use when connecting to the databases. A wildcard allows any user.
--db-namesList of logical databases (aka schemas) the user will be allowed to connect to within a database server. A wildcard allows any database.
Warning

Database names are only enforced for PostgreSQL and MongoDB databases.

For more detailed information about database access controls and how to restrict access see RBAC documentation.

Step 2/6. Create a Database Service configuration

The Database Service requires a valid auth token to connect to the cluster. Generate one by running the following command against your Teleport Auth Service and save it in /tmp/token on the node that will run the Database Service:

tctl tokens add --type=db

Install Teleport on the host where you will run the Teleport Database Service:

Use the appropriate commands for your environment to install your package.

Teleport Edition

Add the Teleport repository to your repository list:

Download Teleport's PGP public key

sudo curl https://apt.releases.teleport.dev/gpg \-o /usr/share/keyrings/teleport-archive-keyring.asc

Source variables about OS version

source /etc/os-release

Add the Teleport APT repository for v12. You'll need to update this

file for each major release of Teleport.

Note: if using a fork of Debian or Ubuntu you may need to use '$ID_LIKE'

and the codename your distro was forked from instead of '$ID' and '$VERSION_CODENAME'.

Supported versions are listed here: https://github.com/gravitational/teleport/blob/master/build.assets/tooling/cmd/build-os-package-repos/runners.go#L42-L67

echo "deb [signed-by=/usr/share/keyrings/teleport-archive-keyring.asc] \https://apt.releases.teleport.dev/${ID?} ${VERSION_CODENAME?} stable/v12" \| sudo tee /etc/apt/sources.list.d/teleport.list > /dev/null

sudo apt-get update
sudo apt-get install teleport

Source variables about OS version

source /etc/os-release

Add the Teleport YUM repository for v12. You'll need to update this

file for each major release of Teleport.

Note: if using a fork of RHEL/CentOS or Amazon Linux you may need to use '$ID_LIKE'

and the codename your distro was forked from instead of '$ID'

Supported versions are listed here: https://github.com/gravitational/teleport/blob/master/build.assets/tooling/cmd/build-os-package-repos/runners.go#L133-L153

sudo yum-config-manager --add-repo $(rpm --eval "https://yum.releases.teleport.dev/$ID/$VERSION_ID/Teleport/%{_arch}/stable/v12/teleport.repo")
sudo yum install teleport

Tip: Add /usr/local/bin to path used by sudo (so 'sudo tctl users add' will work as per the docs)

echo "Defaults secure_path = /sbin:/bin:/usr/sbin:/usr/bin:/usr/local/bin" > /etc/sudoers.d/secure_path

Optional: Use DNF on newer distributions

$ sudo dnf config-manager --add-repo https://rpm.releases.teleport.dev/teleport.repo

$ sudo dnf install teleport

In the example commands below, update $SYSTEM-ARCH with the appropriate value (amd64, arm64, or arm). All example commands using this variable will update after one is filled out.

curl https://get.gravitational.com/teleport-v12.1.1-linux-$SYSTEM-ARCH-bin.tar.gz.sha256

<checksum> <filename>

curl -O https://cdn.teleport.dev/teleport-v12.1.1-linux-$SYSTEM-ARCH-bin.tar.gz
shasum -a 256 teleport-v12.1.1-linux-$SYSTEM-ARCH-bin.tar.gz

Verify that the checksums match

tar -xvf teleport-v12.1.1-linux-$SYSTEM-ARCH-bin.tar.gz
cd teleport
sudo ./install

In the example commands below, update $SYSTEM-ARCH with the appropriate value (amd64, arm64, or arm). All example commands using this variable will update after one is filled out.

After Downloading the .deb file for your system architecture, install it with dpkg. The example below assumes the root user:

dpkg -i ~/Downloads/teleport-ent_12.1.1_$SYSTEM-ARCH.deb

Selecting previously unselected package teleport-ent.

(Reading database ... 30810 files and directories currently installed.)

Preparing to unpack teleport-ent_12.1.1_$SYSTEM_ARCH.deb ...

Unpacking teleport-ent 12.1.1 ...

Setting up teleport-ent 12.1.1 ...

After Downloading the .rpm file for your system architecture, install it with rpm:

rpm -i ~/Downloads/teleport-ent-12.1.1.$SYSTEM-ARCH.rpm

warning: teleport-ent-12.1.1.$SYSTEM-ARCH.rpm: Header V4 RSA/SHA512 Signature, key ID 6282c411: NOKEY

curl https://get.gravitational.com/teleport-ent-v12.1.1-linux-$SYSTEM-ARCH-bin.tar.gz.sha256

<checksum> <filename>

curl -O https://cdn.teleport.dev/teleport-ent-v12.1.1-linux-$SYSTEM-ARCH-bin.tar.gz
shasum -a 256 teleport-ent-v12.1.1-linux-$SYSTEM-ARCH-bin.tar.gz

Verify that the checksums match

tar -xvf teleport-ent-v12.1.1-linux-$SYSTEM-ARCH-bin.tar.gz
cd teleport-ent
sudo ./install

For FedRAMP/FIPS-compliant installations of Teleport Enterprise, package URLs will be slightly different:

curl https://get.gravitational.com/teleport-ent-v12.1.1-linux-$SYSTEM-ARCH-fips-bin.tar.gz.sha256

<checksum> <filename>

curl -O https://cdn.teleport.dev/teleport-ent-v12.1.1-linux-$SYSTEM-ARCH-fips-bin.tar.gz
shasum -a 256 teleport-ent-v12.1.1-linux-$SYSTEM-ARCH-fips-bin.tar.gz

Verify that the checksums match

tar -xvf teleport-ent-v12.1.1-linux-$SYSTEM-ARCH-fips-bin.tar.gz
cd teleport-ent
sudo ./install
Cloud is not available for Teleport v.
Please use the latest version of Teleport Enterprise documentation.

Create the Database Service configuration:

teleport db configure create \ -o file \ --proxy=teleport.example.com:3080 \ --token=/tmp/token \ --elasticache-discovery=us-west-1
teleport db configure create \ -o file \ --proxy=teleport.example.com:3080 \ --token=/tmp/token \ --memorydb-discovery=us-west-1

The command will generate a Database Service configuration with ElastiCache or MemoryDB database auto-discovery enabled on the us-west-1 region and place it at the /etc/teleport.yaml location.

Step 3/6. Create an IAM policy for Teleport

Teleport needs AWS IAM permissions to be able to:

  • Discover and register ElastiCache and MemoryDB for Redis clusters.
  • Modify ElastiCache and MemoryDB user passwords for Teleport-managed users.
  • Save user passwords in AWS Secrets Manager for Teleport-managed users.

Before you can generate IAM permissions, you must provide the Teleport Database Service access to AWS credentials.

Grant the Database Service access to credentials that it can use to authenticate to AWS. If you are running the Database Service on an EC2 instance, you should use the EC2 Instance Metadata Service method. Otherwise, you must use environment variables:

Teleport will detect when it is running on an EC2 instance and use the Instance Metadata Service to fetch credentials.

Teleport's built-in AWS client reads credentials from the following environment variables:

  • AWS_ACCESS_KEY_ID
  • AWS_SECRET_ACCESS_KEY
  • AWS_DEFAULT_REGION

When you start the Database Service, the service reads environment variables from a file at the path /etc/default/teleport. Obtain these credentials from your organization. Ensure that /etc/default/teleport has the following content, replacing the values of each variable:

AWS_ACCESS_KEY_ID=00000000000000000000
AWS_SECRET_ACCESS_KEY=0000000000000000000000000000000000000000
AWS_DEFAULT_REGION=<YOUR_REGION>

Teleport's AWS client loads credentials from different sources in the following order:

  • Environment Variables
  • Shared credentials file
  • Shared configuration file (Teleport always enables shared configuration)
  • EC2 Instance Metadata (credentials only)

While you can provide AWS credentials via a shared credentials file or shared configuration file, you will need to run the Database Service with the AWS_PROFILE environment variable assigned to the name of your profile of choice.

If you have a specific use case that the instructions above do not account for, consult the documentation for the AWS SDK for Go for a detailed description of credential loading behavior.

Teleport can bootstrap IAM permissions for the Database Service based on its configuration using the teleport db configure bootstrap command. You can use this command in automatic or manual mode:

  • In automatic mode, Teleport will attempt to create appropriate IAM policies and attach them to the specified IAM identity (user or role). This requires IAM permissions to create and attach IAM policies.
  • In manual mode, Teleport will print required IAM policies. You can then create and attach them manually using the AWS management console.

Run one of the following commands on your Database Service node:

Use this command to bootstrap the permissions automatically when your Teleport Database Service runs as an IAM user (for example, uses an AWS credentials file).

teleport db configure bootstrap -c /etc/teleport.yaml --attach-to-user TeleportUser

Use this command to bootstrap the permissions automatically when your Teleport Database Service runs as an IAM role (for example, on an EC2 instance with an attached IAM role).

teleport db configure bootstrap -c /etc/teleport.yaml --attach-to-role TeleportRole

Use this command to display required IAM policies which you will then create in your AWS console:

teleport db configure bootstrap -c /etc/teleport.yaml --manual

See the full bootstrap command reference.

Step 4/6. Start the Database Service

Configure the Database Service to start automatically when the host boots up by creating a systemd service for it. The instructions depend on how you installed the Database Service.

On the host where you will run the Database Service, start Teleport:

sudo systemctl start teleport

On the host where you will run the Database Service, create a systemd service configuration for Teleport, enable the Teleport service, and start Teleport:

sudo teleport install systemd -o /etc/systemd/system/teleport.service
sudo systemctl enable teleport
sudo systemctl start teleport

The Database Service will discover and register all ElastiCache and MemoryDB for Redis clusters according to the configuration.

Step 5/6. Create a Teleport-managed ElastiCache or MemoryDB user (optional)

To provide better security, it is recommended to use Redis ACL for authentication with Redis and let Teleport manage the users. The Teleport Database Service constantly rotates any passwords managed by Teleport, saves these passwords in AWS Secrets Manager, and automatically sends an AUTH command with the saved password when connecting the client to the Redis server.

To enable Redis ACL, please see Authenticating users with Role-Based Access Control for ElastiCache and Authenticating users with Access Control Lists for MemoryDB.

Once an ElastiCache or MemoryDB user is created with the desired access, add an AWS resource tag teleport.dev/managed with the value true to this user:

Managed User Tag

The Database Service will automatically discover this user if it is associated with a registered database. Keep in mind that it may take the Database Service some time (up to 20 minutes) to discover this user once the tag is added.

Step 6/6. Connect

Once the Database Service has started and joined the cluster, log in to see the registered databases:

tsh login --proxy=teleport.example.com --user=alice
tsh db ls

Name Description Labels

--------------------------- --------------------------------------------------------- --------

my-cluster-mode-elasticache ElastiCache cluster in us-west-1 (configuration endpoint) ...

my-elasticache ElastiCache cluster in us-west-1 (primary endpoint) ...

my-elasticache-reader ElastiCache cluster in us-west-1 (reader endpoint) ...

my-memorydb MemoryDB cluster in us-west-1 ...

Note

You can override the database name by applying the teleport.dev/database_name AWS tag to the resource. The value of the tag will be used as the database name.

To retrieve credentials for a database and connect to it:

tsh db connect --db-user=my-database-user my-elasticache

If flag --db-user is not provided, Teleport logs in as the default user.

Now, depending on the authentication configurations, you may need to send an AUTH command to authenticate with the Redis server:

The Database Service automatically authenticates Teleport-managed users with the Redis server. No AUTH command is required after successful connection.

If you are connecting as a non-Teleport-managed user, the connection normally starts as the default user. Now you can authenticate the database user with its password:

AUTH my-database-user <USER_PASSWORD>

Now you can authenticate with the shared AUTH token:

AUTH <SHARED_AUTH_TOKEN>

For Redis deployments without the ACL system or legacy requirepass directive enabled, no AUTH command is required.

To log out of the database and remove credentials:

Remove credentials for a particular database instance.

tsh db logout my-elasticache

Remove credentials for all database instances.

tsh db logout

Troubleshooting

Certificate error

If your tsh db connect error includes the following text, you likely have an RDS database created before July 28, 2020, which presents an X.509 certificate that is incompatible with Teleport:

x509: certificate relies on legacy Common Name field, use SANs instead

AWS provides instructions to rotate your SSL/TLS certificate.

No credential providers error

If you see the error NoCredentialProviders: no valid providers in chain in Database Service logs then Teleport is not detecting the required credentials to connect via AWS IAM permissions. Check whether the credentials or security role has been applied in the machine running the Teleport Database Service.

Timeout errors

The Teleport Database Service needs connectivity to your database endpoints. That may require enabling inbound traffic on the database from the Database Service on the same VPC or routing rules from another VPC. Using the nc program you can verify connections to databases:

nc -zv postgres-instance-1.sadas.us-east-1.rds.amazonaws.com 5432

Connection to postgres-instance-1.sadas.us-east-1.rds.amazonaws.com (172.31.24.172) 5432 port [tcp/postgresql] succeeded!

Next steps

  • Take a look at the YAML configuration reference.