Teleport Workload Identity with SPIFFE: Achieving Zero Trust in Modern Infrastructure
May 23
Virtual
Register Today
Teleport logoTry For Free
Fork me on GitHub

Teleport

Run the Discord Access Request Plugin

This guide will explain how to set up Discord to receive Access Request messages from Teleport. Teleport's Discord integration notifies individuals and channels of Access Requests. Users can then approve and deny Access Requests from within Discord, making it easier to implement security best practices without compromising productivity.

In Teleport Enterprise Cloud, Teleport manages the Discord integration for you, and you can enroll the Discord integration from the Teleport Web UI.

Visit the Teleport Web UI and click Access Management on the menu bar at the top of the screen.

On the left sidebar, click Enroll New Integration to visit the "Enroll New Integration" page:

On the "Select Integration Type" menu, click the tile for your integration. You will see a page with instructions to set up the integration, as well as a form that you can use to configure the integration.

Prerequisites

Recommended: Configure Machine ID to provide short-lived Teleport credentials to the plugin. Before following this guide, follow a Machine ID deployment guide to run the tbot binary on your infrastructure.

  • Admin account on your Discord server. Installing a bot requires at least the "manager server" permission.
  • Either a Linux host or Kubernetes cluster where you will run the Discord plugin.
  • To check that you can connect to your Teleport cluster, sign in with tsh login, then verify that you can run tctl commands using your current credentials. tctl is supported on macOS and Linux machines. For example:
    tsh login --proxy=teleport.example.com --user=[email protected]
    tctl status

    Cluster teleport.example.com

    Version 15.2.4

    CA pin sha256:abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678

    If you can connect to the cluster and run the tctl status command, you can use your current credentials to run subsequent tctl commands from your workstation. If you host your own Teleport cluster, you can also run tctl commands on the computer that hosts the Teleport Auth Service for full permissions.

Step 1/8. Define RBAC resources

Before you set up the Discord plugin, you will need to enable Role Access Requests in your Teleport cluster.

For the purpose of this guide, we will define an editor-requester role, which can request the built-in editor role, and an editor-reviewer role that can review requests for the editor role.

Create a file called editor-request-rbac.yaml with the following content:

kind: role
version: v5
metadata:
  name: editor-reviewer
spec:
  allow:
    review_requests:
      roles: ['editor']
---
kind: role
version: v5
metadata:
  name: editor-requester
spec:
  allow:
    request:
      roles: ['editor']
      thresholds:
        - approve: 1
          deny: 1

Create the roles you defined:

tctl create -f editor-request-rbac.yaml
role 'editor-reviewer' has been createdrole 'editor-requester' has been created

Allow yourself to review requests by users with the editor-requester role by assigning yourself the editor-reviewer role.

Assign the editor-reviewer role to your Teleport user by running the appropriate commands for your authentication provider:

  1. Retrieve your local user's roles as a comma-separated list:

    ROLES=$(tsh status -f json | jq -r '.active.roles | join(",")')
  2. Edit your local user to add the new role:

    tctl users update $(tsh status -f json | jq -r '.active.username') \ --set-roles "${ROLES?},editor-reviewer"
  3. Sign out of the Teleport cluster and sign in again to assume the new role.

  1. Retrieve your github authentication connector:

    tctl get github/github --with-secrets > github.yaml

    Note that the --with-secrets flag adds the value of spec.signing_key_pair.private_key to the github.yaml file. Because this key contains a sensitive value, you should remove the github.yaml file immediately after updating the resource.

  2. Edit github.yaml, adding editor-reviewer to the teams_to_roles section.

    The team you should map to this role depends on how you have designed your organization's role-based access controls (RBAC). However, the team must include your user account and should be the smallest team possible within your organization.

    Here is an example:

      teams_to_roles:
        - organization: octocats
          team: admins
          roles:
            - access
    +       - editor-reviewer
    
  3. Apply your changes:

    tctl create -f github.yaml
  4. Sign out of the Teleport cluster and sign in again to assume the new role.

  1. Retrieve your saml configuration resource:

    tctl get --with-secrets saml/mysaml > saml.yaml

    Note that the --with-secrets flag adds the value of spec.signing_key_pair.private_key to the saml.yaml file. Because this key contains a sensitive value, you should remove the saml.yaml file immediately after updating the resource.

  2. Edit saml.yaml, adding editor-reviewer to the attributes_to_roles section.

    The attribute you should map to this role depends on how you have designed your organization's role-based access controls (RBAC). However, the group must include your user account and should be the smallest group possible within your organization.

    Here is an example:

      attributes_to_roles:
        - name: "groups"
          value: "my-group"
          roles:
            - access
    +       - editor-reviewer
    
  3. Apply your changes:

    tctl create -f saml.yaml
  4. Sign out of the Teleport cluster and sign in again to assume the new role.

  1. Retrieve your oidc configuration resource:

    tctl get oidc/myoidc --with-secrets > oidc.yaml

    Note that the --with-secrets flag adds the value of spec.signing_key_pair.private_key to the oidc.yaml file. Because this key contains a sensitive value, you should remove the oidc.yaml file immediately after updating the resource.

  2. Edit oidc.yaml, adding editor-reviewer to the claims_to_roles section.

    The claim you should map to this role depends on how you have designed your organization's role-based access controls (RBAC). However, the group must include your user account and should be the smallest group possible within your organization.

    Here is an example:

      claims_to_roles:
        - name: "groups"
          value: "my-group"
          roles:
            - access
    +       - editor-reviewer
    
  3. Apply your changes:

    tctl create -f oidc.yaml
  4. Sign out of the Teleport cluster and sign in again to assume the new role.

Create a user called myuser who has the editor-requester role. This user cannot edit your cluster configuration unless they request the editor role:

tctl users add myuser --roles=editor-requester

tctl will print an invitation URL to your terminal. Visit the URL and log in as myuser for the first time, registering credentials as configured for your Teleport cluster.

Later in this guide, you will have myuser request the editor role so you can review the request using the Teleport plugin.

Step 2/8. Install the Teleport Discord plugin

We currently only provide linux-amd64 binaries. You can also compile these plugins from source. You can run the plugin from a remote host or your local development machine.

curl -L -O https://get.gravitational.com/teleport-access-discord-v15.2.4-linux-amd64-bin.tar.gz
tar -xzf teleport-access-discord-v15.2.4-linux-amd64-bin.tar.gz
cd teleport-access-discord
sudo ./install

Make sure the binary is installed:

teleport-discord version
teleport-discord v15.2.4 git:teleport-discord-v15.2.4-fffffffff go1.21

We currently only provide Docker images for linux-amd64. Pull the Docker image for the latest access request plugin by running the following command:

docker pull public.ecr.aws/gravitational/teleport-plugin-discord:15.2.4

Make sure the plugin is installed by running the following command:

docker run public.ecr.aws/gravitational/teleport-plugin-discord:15.2.4 version
teleport-discord v15.2.4 git:teleport-discord-v15.2.4-api/14.0.0-gd1e081e 1.21

For a list of available tags, visit Amazon ECR Public Gallery.

To install from source you need git and go installed. If you do not have Go installed, visit the Go downloads page.

git clone https://github.com/gravitational/teleport-plugins.git
cd teleport-plugins/access/discord
make

Move the teleport-discord binary into your PATH.

Make sure the binary is installed:

teleport-discord version
teleport-discord v15.2.4 git:teleport-discord-v15.2.4-fffffffff go1.21

Allow Helm to install charts that are hosted in the Teleport Helm repository:

helm repo add teleport https://charts.releases.teleport.dev

Update the cache of charts from the remote repository:

helm repo update

Step 3/8. Create a user and role for the plugin

Teleport's Access Request plugins authenticate to your Teleport cluster as a user with permissions to list and read Access Requests. This way, plugins can retrieve Access Requests from the Teleport Auth Service and present them to reviewers.

Define a user and role called access-plugin by adding the following content to a file called access-plugin.yaml:

kind: role
version: v5
metadata:
  name: access-plugin
spec:
  allow:
    rules:
      - resources: ['access_request']
        verbs: ['list', 'read']
      - resources: ['access_plugin_data']
        verbs: ['update']
---
kind: user
metadata:
  name: access-plugin
spec:
  roles: ['access-plugin']
version: v2

Create the user and role:

tctl create -f access-plugin.yaml

As with all Teleport users, the Teleport Auth Service authenticates the access-plugin user by issuing short-lived TLS credentials. In this case, we will need to request the credentials manually by impersonating the access-plugin role and user.

If you are running a self-hosted Teleport Enterprise deployment and are using tctl from the Auth Service host, you will already have impersonation privileges.

To grant your user impersonation privileges for access-plugin, define a role called access-plugin-impersonator by pasting the following YAML document into a file called access-plugin-impersonator.yaml:

kind: role
version: v5
metadata:
  name: access-plugin-impersonator
spec:
  allow:
    impersonate:
      roles:
      - access-plugin
      users:
      - access-plugin

Create the access-plugin-impersonator role:

tctl create -f access-plugin-impersonator.yaml

If you are providing identity files to the plugin with Machine ID, assign the access-plugin role to the Machine ID bot user. Otherwise, assign this role to the user you plan to use to generate credentials for the access-plugin role and user:

Assign the access-plugin-impersonator role to your Teleport user by running the appropriate commands for your authentication provider:

  1. Retrieve your local user's roles as a comma-separated list:

    ROLES=$(tsh status -f json | jq -r '.active.roles | join(",")')
  2. Edit your local user to add the new role:

    tctl users update $(tsh status -f json | jq -r '.active.username') \ --set-roles "${ROLES?},access-plugin-impersonator"
  3. Sign out of the Teleport cluster and sign in again to assume the new role.

  1. Retrieve your github authentication connector:

    tctl get github/github --with-secrets > github.yaml

    Note that the --with-secrets flag adds the value of spec.signing_key_pair.private_key to the github.yaml file. Because this key contains a sensitive value, you should remove the github.yaml file immediately after updating the resource.

  2. Edit github.yaml, adding access-plugin-impersonator to the teams_to_roles section.

    The team you should map to this role depends on how you have designed your organization's role-based access controls (RBAC). However, the team must include your user account and should be the smallest team possible within your organization.

    Here is an example:

      teams_to_roles:
        - organization: octocats
          team: admins
          roles:
            - access
    +       - access-plugin-impersonator
    
  3. Apply your changes:

    tctl create -f github.yaml
  4. Sign out of the Teleport cluster and sign in again to assume the new role.

  1. Retrieve your saml configuration resource:

    tctl get --with-secrets saml/mysaml > saml.yaml

    Note that the --with-secrets flag adds the value of spec.signing_key_pair.private_key to the saml.yaml file. Because this key contains a sensitive value, you should remove the saml.yaml file immediately after updating the resource.

  2. Edit saml.yaml, adding access-plugin-impersonator to the attributes_to_roles section.

    The attribute you should map to this role depends on how you have designed your organization's role-based access controls (RBAC). However, the group must include your user account and should be the smallest group possible within your organization.

    Here is an example:

      attributes_to_roles:
        - name: "groups"
          value: "my-group"
          roles:
            - access
    +       - access-plugin-impersonator
    
  3. Apply your changes:

    tctl create -f saml.yaml
  4. Sign out of the Teleport cluster and sign in again to assume the new role.

  1. Retrieve your oidc configuration resource:

    tctl get oidc/myoidc --with-secrets > oidc.yaml

    Note that the --with-secrets flag adds the value of spec.signing_key_pair.private_key to the oidc.yaml file. Because this key contains a sensitive value, you should remove the oidc.yaml file immediately after updating the resource.

  2. Edit oidc.yaml, adding access-plugin-impersonator to the claims_to_roles section.

    The claim you should map to this role depends on how you have designed your organization's role-based access controls (RBAC). However, the group must include your user account and should be the smallest group possible within your organization.

    Here is an example:

      claims_to_roles:
        - name: "groups"
          value: "my-group"
          roles:
            - access
    +       - access-plugin-impersonator
    
  3. Apply your changes:

    tctl create -f oidc.yaml
  4. Sign out of the Teleport cluster and sign in again to assume the new role.

You will now be able to generate signed certificates for the access-plugin role and user.

Step 4/8. Export the access plugin identity

Give the plugin access to a Teleport identity file. We recommend using Machine ID for this in order to produce short-lived identity files that are less dangerous if exfiltrated, though in demo deployments, you can generate longer-lived identity files with tctl:

Configure tbot with an output that will produce the credentials needed by the plugin. As the plugin will be accessing the Teleport API, the correct output type to use is identity.

For this guide, the directory destination will be used. This will write these credentials to a specified directory on disk. Ensure that this directory can be written to by the Linux user that tbot runs as, and that it can be read by the Linux user that the plugin will run as.

Modify your tbot configuration to add an identity output.

If running tbot on a Linux server, use the directory output to write identity files to the /opt/machine-id directory:

outputs:
- type: identity
  destination:
    type: directory
    # For this guide, /opt/machine-id is used as the destination directory.
    # You may wish to customize this. Multiple outputs cannot share the same
    # destination.
    path: /opt/machine-id

If running tbot on Kubernetes, write the identity file to Kubernetes secret instead:

outputs:
  - type: identity
    destination:
      type: kubernetes_secret
      name: teleport-plugin-discord-identity

If operating tbot as a background service, restart it. If running tbot in one-shot mode, execute it now.

You should now see an identity file under /opt/machine-id or a Kubernetes secret named teleport-plugin-discord-identity. This contains the private key and signed certificates needed by the plugin to authenticate with the Teleport Auth Service.

Like all Teleport users, access-plugin needs signed credentials in order to connect to your Teleport cluster. You will use the tctl auth sign command to request these credentials.

The following tctl auth sign command impersonates the access-plugin user, generates signed credentials, and writes an identity file to the local directory:

tctl auth sign --user=access-plugin --out=identity

The plugin connects to the Teleport Auth Service's gRPC endpoint over TLS.

The identity file, identity, includes both TLS and SSH credentials. The plugin uses the SSH credentials to connect to the Proxy Service, which establishes a reverse tunnel connection to the Auth Service. The plugin uses this reverse tunnel, along with your TLS credentials, to connect to the Auth Service's gRPC endpoint.

By default, tctl auth sign produces certificates with a relatively short lifetime. For production deployments, we suggest using Machine ID to programmatically issue and renew certificates for your plugin. See our Machine ID getting started guide to learn more.

Note that you cannot issue certificates that are valid longer than your existing credentials. For example, to issue certificates with a 1000-hour TTL, you must be logged in with a session that is valid for at least 1000 hours. This means your user must have a role allowing a max_session_ttl of at least 1000 hours (60000 minutes), and you must specify a --ttl when logging in:

tsh login --proxy=teleport.example.com --ttl=60060

If you are running the plugin on a Linux server, create a data directory to hold certificate files for the plugin:

sudo mkdir -p /var/lib/teleport/api-credentials
sudo mv identity /var/lib/teleport/plugins/api-credentials

If you are running the plugin on Kubernetes, Create a Kubernetes secret that contains the Teleport identity file:

kubectl -n teleport create secret generic --from-file=identity teleport-plugin-discord-identity

Once the Teleport credentials expire, you will need to renew them by running the tctl auth sign command again.

Step 5/8. Register a Discord app

The Access Request plugin for Discord receives Access Request events from the Teleport Auth Service, formats them into Discord messages, and sends them to the Discord API to post them in your guild (Discord server). For this to work, you must register a new app with the Discord API.

Create your application

Visit https://discord.com/developers/applications to create a new Discord application. Click "New Application" and name the application "Teleport".

Set the application icon (download application icon here).

Create the application bot

Go to the "Bot" tab and choose "Add Bot". Set the bot icon (download bot icon here). Un-check the "Public Bot" toggle as this bot should only be used within your Discord servers. Finally, press "Reset Token", copy and save the new token into a safe place. This token will be used by the Teleport plugin to authenticate against the Discord API.

Install and authorize the application in your Discord server

Go the the "OAuth2" tab, open the "URL Generator" and check the "bot" and "Send Messages" permissions.

Copy and access the generated URL. Choose to install the application into the desired Discord server. If the server is not available in the dropdown list, it means you don't have sufficient rights. Ask a server administrator to grant you a role with the "manage server" permission.

Note

The same application can be installed into multiple Discord servers. To do so, access the OAuth URL multiple times and choose different servers. You have to be admin on a Discord server to install the app into it.

Step 6/8. Configure the Teleport Discord plugin

At this point, the Teleport Discord plugin has the credentials it needs to communicate with your Teleport cluster and the Discord API. In this step, you will configure the Discord plugin to use these credentials. You will also configure the plugin to notify the right Discord channels when it receives an Access Request update.

Create a config file

The Teleport Discord plugin uses a config file in TOML format. Generate a boilerplate config by running the following command (the plugin will not run unless the config file is in /etc/teleport-discord.toml):

teleport-discord configure | sudo tee /etc/teleport-discord.toml > /dev/null

This should result in a config file like the one below:

# Example Discord plugin configuration TOML file

[teleport]
# Teleport Auth/Proxy Server address.
# addr = "example.com:3025"
#
# Should be port 3025 for Auth Server and 3080 or 443 for Proxy.
# For Teleport Cloud, should be in the form "your-account.teleport.sh:443".

# Credentials generated with `tctl auth sign`.
#
# When using --format=file:
# identity = "/var/lib/teleport/plugins/discord/identity"    # Identity file
# refresh_identity = true                                    # Refresh identity file on a periodic basis.
#
# When using --format=tls:
# client_key = "/var/lib/teleport/plugins/discord/auth.key" # Teleport TLS secret key
# client_crt = "/var/lib/teleport/plugins/discord/auth.crt" # Teleport TLS certificate
# root_cas = "/var/lib/teleport/plugins/discord/auth.cas"   # Teleport CA certs

[discord]
# Discord Bot OAuth token
token = "XXXXXXXXX"

[role_to_recipients]
# Map roles to recipients.
#
# Provide Discord channel ID recipients for access requests for specific roles.
# "*" must be provided to match non-specified roles.
#
# "dev" = "1234567890"
# "*" = ["0987654321"]

[log]
output = "stderr" # Logger output. Could be "stdout", "stderr" or "/var/lib/teleport/discord.log"
severity = "INFO" # Logger severity. Could be "INFO", "ERROR", "DEBUG" or "WARN".

The Discord Helm chart uses a YAML values file to configure the plugin. On your local workstation, create a file called teleport-discord-helm.yaml based on the following example:

teleport:
  # Teleport HTTPS Proxy web address, for Teleport Enterprise Cloud should be in the form "your-account.teleport.sh:443"
  address: "teleport.example.com:443"
  # Secret containing identity
  identitySecretName: teleport-plugin-discord-identity
  # Path within the secret containing the identity file.
  identitySecretPath: identity

discord:
  token: "XXXXXXXX"  # Discord Bot OAuth token

# Mapping from role to recipients
roleToRecipients: []
#  "*":
#    - "1234567890"  # security-team
#  "dev":
#    - "0987654321"  # dev-team-channel
#    - "1212121212"  # admin-team-channel

Edit the config file

Open the configuration file created for the Teleport Discord plugin and update the following fields:

[teleport]

The Discord plugin uses this section to connect to the Teleport Auth Service.

addr: Include the hostname and HTTPS port of your Teleport Proxy Service or Teleport Enterprise Cloud tenant (e.g., teleport.example.com:443 or mytenant.teleport.sh:443).

identity: Fill this in with the path to the identity file you exported earlier.

client_key, client_crt, root_cas: Comment these out, since we are not using them in this configuration.

address: Include the hostname and HTTPS port of your Teleport Proxy Service or Teleport Enterprise Cloud tenant (e.g., teleport.example.com:443 or mytenant.teleport.sh:443).

identitySecretName: Fill in the identitySecretName field with the name of the Kubernetes secret you created earlier.

identitySecretPath: Fill in the identitySecretPath field with the path of the identity file within the Kubernetes secret. If you have followed the instructions above, this will be identity.

If you are providing credentials to the plugin using a tbot binary that runs on a Linux server, make sure the value of identity is the same as the path of the identity file you configured tbot to generate, /opt/machine-id/identity.

Configure the plugin to periodically reload the identity file, ensuring that it does not attempt to connect to the Teleport Auth Service with expired credentials.

Add the following to the teleport section of the configuration:

refresh_identity = true

[discord]

token: Paste the bot token saved previously in this field.

[role_to_recipients]

The role_to_recipients map configures the channels that the Discord plugin will notify when a user requests access to a specific role. When the Discord plugin receives an Access Request from the Auth Service, it will look up the role being requested and identify the Discord channels to notify.

Each channel is represented by a numeric ID. Channels can be public, private or direct messages between a user and the bot. To determine the numeric ID of a channel for the bot to notify, follow the instructions below:

Open Discord in a web browser and navigate to the desired channel.

The web browser URL should look like:

https://discord.com/channels/<guild ID>/<channel ID>

Copy the last part of the URL (everything after the last /), which is the channel ID.

Open Discord in a web browser and navigate to the desired channel.

In the channel list choose "Create invite", type "teleport" in the search field and invite your Discord Teleport bot. The bot should now appear in the channel member list.

The web browser URL should look like:

https://discord.com/channels/<guild ID>/<channel ID>

Copy the last part of the URL (everything after the last /), which is the channel ID.

To retrieve the channel ID of the private discussion between User A and the Teleport bot, have User A send a direct message to the Teleport bot. This will open a conversation between the user and the bot. Once the conversation is initiated, the user can open the discussion page.

The web browser URL should look like:

https://discord.com/channels/@me/<channel ID>

Copy the last part of the URL (everything after the last /), which is the channel ID.

In the role_to_recipients map, each key is the name of a Teleport role. Each value configures the Discord channel (or channels) to notify. The value can be a single string or an array of strings.

The role_to_recipients map must also include an entry for "*", which the plugin looks up if no other entry matches a given role name. In the example above, requests for roles aside from dev will notify the security-team channel.

Configure the Discord plugin to notify you when a user requests the editor role by adding the following to your role_to_recipients config (replace YOUR-CHANNEL-ID with a valid channel ID):

[role_to_recipients]
"*" = "YOUR-CHANNEL-ID"
"editor" = "YOUR-CHANNEL-ID"
roleToRecipients:
  "*": "YOUR-CHANNEL-ID"
  "editor": "YOUR-CHANNEL-ID"

The final configuration file should resemble the following:

# Example Discord plugin configuration TOML file

[teleport]
# Teleport Auth/Proxy Server address.
# addr = "example.com:3025"
#
# Should be port 3025 for Auth Server and 3080 or 443 for Proxy.
# For Teleport Cloud, should be in the form "your-account.teleport.sh:443".

# Credentials generated with `tctl auth sign`.
#
# When using --format=file:
# identity = "/var/lib/teleport/plugins/discord/identity"    # Identity file
# refresh_identity = true                                    # Refresh identity file on a periodic basis.
#
# When using --format=tls:
# client_key = "/var/lib/teleport/plugins/discord/auth.key" # Teleport TLS secret key
# client_crt = "/var/lib/teleport/plugins/discord/auth.crt" # Teleport TLS certificate
# root_cas = "/var/lib/teleport/plugins/discord/auth.cas"   # Teleport CA certs

[discord]
# Discord Bot OAuth token
token = "XXXXXXXXX"

[role_to_recipients]
# Map roles to recipients.
#
# Provide Discord channel ID recipients for access requests for specific roles.
# "*" must be provided to match non-specified roles.
#
# "dev" = "1234567890"
# "*" = ["0987654321"]

[log]
output = "stderr" # Logger output. Could be "stdout", "stderr" or "/var/lib/teleport/discord.log"
severity = "INFO" # Logger severity. Could be "INFO", "ERROR", "DEBUG" or "WARN".

teleport:
  # Teleport HTTPS Proxy web address, for Teleport Enterprise Cloud should be in the form "your-account.teleport.sh:443"
  address: "teleport.example.com:443"
  # Secret containing identity
  identitySecretName: teleport-plugin-discord-identity
  # Path within the secret containing the identity file.
  identitySecretPath: identity

discord:
  token: "XXXXXXXX"  # Discord Bot OAuth token

# Mapping from role to recipients
roleToRecipients: []
#  "*":
#    - "1234567890"  # security-team
#  "dev":
#    - "0987654321"  # dev-team-channel
#    - "1212121212"  # admin-team-channel

Step 7/8. Test your Discord app

Once Teleport is running, you've created the Discord app, and the plugin is configured, you can now run the plugin and test the workflow.

Start the plugin:

teleport-discord start

If everything works fine, the log output should look like this:

teleport-discord start
INFO Starting Teleport Access Discord Plugin 15.2.4: discord/app.go:80INFO Plugin is ready discord/app.go:101

Start the plugin:

docker run -v <path-to-config>:/etc/teleport-discord.toml public.ecr.aws/gravitational/teleport-plugin-discord:15.2.4 start

Install the plugin:

helm upgrade --install teleport-plugin-discord teleport/teleport-plugin-discord --values teleport-discord-helm.yaml

To inspect the plugin's logs, use the following command:

kubectl logs deploy/teleport-plugin-discord

Debug logs can be enabled by setting log.severity to DEBUG in teleport-discord-helm.yaml and executing the helm upgrade ... command above again. Then you can restart the plugin with the following command:

kubectl rollout restart deployment teleport-plugin-discord

Create an Access Request and check if the plugin works as expected with the following steps.

Create an Access Request

A Teleport admin can create an Access Request for another user with tctl:

tctl request create myuser --roles=editor

Users can use tsh to create an Access Request and log in with approved roles:

tsh request create --roles=editor
Seeking request approval... (id: 8f77d2d1-2bbf-4031-a300-58926237a807)

Users can request access using the Web UI by visiting the "Access Requests" tab and clicking "New Request":

The channel you configured earlier to review the request should receive a message from "Teleport" in Discord allowing them to visit a link in the Teleport Web UI and either approve or deny the request.

Resolve the request

Once you receive an Access Request message, click the link to visit Teleport and approve or deny the request:

You can also review an Access Request from the command line:

Replace REQUEST_ID with the id of the request

tctl request approve REQUEST_ID
tctl request deny REQUEST_ID

Replace REQUEST_ID with the id of the request

tsh request review --approve REQUEST_ID
tsh request review --deny REQUEST_ID

Once the request is resolved, the Discord bot will update the access request message with ✅ or ❌, depending on whether the request was approved or denied.

Auditing Access Requests

When the Discord plugin posts an Access Request notification to a channel, anyone with access to the channel can view the notification and follow the link. While users must be authorized via their Teleport roles to review Access Requests, you should still check the Teleport audit log to ensure that the right users are reviewing the right requests.

When auditing Access Request reviews, check for events with the type Access Request Reviewed in the Teleport Web UI.

Step 8/8. Set up systemd

This section is only relevant if you are running the Teleport Discord plugin on a Linux host.

In production, we recommend starting the Teleport plugin daemon via an init system like systemd. Here's the recommended Teleport plugin service unit file for systemd:

[Unit]
Description=Teleport Discord Plugin
After=network.target

[Service]
Type=simple
Restart=on-failure
ExecStart=/usr/local/bin/teleport-discord start --config=/etc/teleport-discord.toml
ExecReload=/bin/kill -HUP $MAINPID
PIDFile=/run/teleport-discord.pid

[Install]
WantedBy=multi-user.target

Save this as teleport-discord.service in either /usr/lib/systemd/system/ or another unit file load path supported by systemd.

Enable and start the plugin:

sudo systemctl enable teleport-discord
sudo systemctl start teleport-discord

Next steps