Database Access with AWS ElastiCache and AWS MemoryDB for Redis
Teleport can provide secure access to Amazon ElastiCache or MemoryDB for Redis via the Teleport Database Service. This allows for fine-grained access control through Teleport's RBAC.
In this guide, you will:
- Configure your Amazon ElastiCache or MemoryDB for Redis database with IAM authentication.
- Add the database to your Teleport cluster.
- Connect to the database via Teleport.
How it works
The Teleport Database Service proxies traffic from users to AWS ElastiCache or MemoryDB for Redis. Authentication between the Database Service and the AWS-hosted Redis database can take one of two forms:
- IAM authentication (preferred): The Teleport Database Service connects to the database using a short-lived AWS IAM authentication token. AWS IAM authentication is available for ElastiCache and MemoryDB with Redis version 7.0 or above.
- Managing users: The Teleport Database Service manages users in a Redis
access control list, rotates their passwords every 15 minutes, and saves these
passwords in AWS Secrets Manager. The Database Service automatically sends an
AUTH
command with the saved password when connecting the client to the Redis server.
- Self-Hosted
- Teleport Cloud
This guide shows how to register a single Amazon Elasticache or MemoryDB cluster with your Teleport cluster. For a more scalable approach, learn how to set up Database Auto-Discovery to automatically enroll all AWS databases in your infrastructure.
Prerequisites
-
A running Teleport cluster version 15.4.22 or above. If you want to get started with Teleport, sign up for a free trial or set up a demo environment.
-
The
tctl
admin tool andtsh
client tool.On Teleport Enterprise, you must use the Enterprise version of
tctl
, which you can download from your Teleport account workspace. Otherwise, visit Installation for instructions on downloadingtctl
andtsh
for Teleport Community Edition.
- AWS account with at least one ElastiCache or MemoryDB for Redis cluster. In-transit encryption via (TLS) must be enabled.
- Permissions to create and attach IAM policies.
redis-cli
version6.2
or newer installed and added to your system'sPATH
environment variable.- A host, e.g., an EC2 instance, where you will run the Teleport Database Service.
- Redis ACL enabled for your ElastiCache or MemoryDB for Redis cluster.
- A running Teleport Discovery Service if you plan to use Database Auto-Discovery.
- To check that you can connect to your Teleport cluster, sign in with
tsh login
, then verify that you can runtctl
commands using your current credentials.tctl
is supported on macOS and Linux machines. For example:If you can connect to the cluster and run the$ tsh login --proxy=teleport.example.com [email protected]
$ tctl status
# Cluster teleport.example.com
# Version 15.4.22
# CA pin sha256:abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678tctl status
command, you can use your current credentials to run subsequenttctl
commands from your workstation. If you host your own Teleport cluster, you can also runtctl
commands on the computer that hosts the Teleport Auth Service for full permissions.
Step 1/6. Create a Teleport user
To modify an existing user to provide access to the Database Service, see Database Access Controls
- Teleport Community Edition
- Teleport Enterprise/Enterprise Cloud
Create a local Teleport user with the built-in access
role:
$ tctl users add \
--roles=access \
--db-users="*" \
--db-names="*" \
alice
Create a local Teleport user with the built-in access
and requester
roles:
$ tctl users add \
--roles=access,requester \
--db-users="*" \
--db-names="*" \
alice
Flag | Description |
---|---|
--roles | List of roles to assign to the user. The builtin access role allows them to connect to any database server registered with Teleport. |
--db-users | List of database usernames the user will be allowed to use when connecting to the databases. A wildcard allows any user. |
--db-names | List of logical databases (aka schemas) the user will be allowed to connect to within a database server. A wildcard allows any database. |
Database names are only enforced for PostgreSQL, MongoDB, and Cloud Spanner databases.
For more detailed information about database access controls and how to restrict access see RBAC documentation.
Step 2/6. Create a Database Service configuration
The Database Service requires a valid join token to join your Teleport cluster.
Run the following tctl
command and save the token output in /tmp/token
on the server that will run the Database Service:
$ tctl tokens add --type=db --format=text
abcd123-insecure-do-not-use-this
Alternative methods
For users with a lot of infrastructure in AWS, or who might create or recreate many instances, consider alternative methods for joining new EC2 instances running Teleport:
Install Teleport on your Linux server:
-
Assign edition to one of the following, depending on your Teleport edition:
Edition Value Teleport Enterprise Cloud cloud
Teleport Enterprise (Self-Hosted) enterprise
Teleport Community Edition oss
-
Get the version of Teleport to install. If you have automatic agent updates enabled in your cluster, query the latest Teleport version that is compatible with the updater:
$ TELEPORT_DOMAIN=example.teleport.com
$ TELEPORT_VERSION="$(curl https://$TELEPORT_DOMAIN/v1/webapi/automaticupgrades/channel/default/version | sed 's/v//')"Otherwise, get the version of your Teleport cluster:
$ TELEPORT_DOMAIN=example.teleport.com
$ TELEPORT_VERSION="$(curl https://$TELEPORT_DOMAIN/v1/webapi/ping | jq -r '.server_version')" -
Install Teleport on your Linux server:
$ curl https://cdn.teleport.dev/install-v15.4.22.sh | bash -s ${TELEPORT_VERSION} edition
The installation script detects the package manager on your Linux server and uses it to install Teleport binaries. To customize your installation, learn about the Teleport package repositories in the installation guide.
Create the Database Service configuration:
- ElastiCache
- MemoryDB
Change example.teleport.sh:443
to the host and port of your Teleport Proxy
Service. Set ELASTICACHE_URI
to the domain name and port of your ElastiCache
database:
$ ELASTICACHE_URI=""
$ sudo teleport db configure create \
-o file \
--name="elasticache" \
--proxy=example.teleport.sh:443 \
--protocol="redis" \
--uri=${ELASTICACHE_URI?} \
--token=/tmp/token
Change example.teleport.sh:443
to the host and port of your Teleport Proxy
Service. Set MEMORYDB_URI
to the domain name and port of your ElastiCache
database:
$ MEMORYDB_URI=""
$ sudo teleport db configure create \
-o file \
--name="memorydb" \
--proxy=example.teleport.sh:443 \
--protocol="redis" \ \
--uri=${MEMORYDB_URI} \
--token=/tmp/token
The command will generate a Database Service configuration and place it at the
/etc/teleport.yaml
location.
Step 3/6. Create an IAM policy for Teleport
Teleport needs AWS IAM permissions to be able to:
- Modify ElastiCache and MemoryDB user passwords for Teleport-managed users.
- Save user passwords in AWS Secrets Manager for Teleport-managed users.
- Connect to an ElastiCache or MemoryDB cluster using IAM auth.
Before you can generate IAM permissions, you must provide the Teleport Database Service access to AWS credentials.
Grant the Database Service access to credentials that it can use to authenticate to AWS. If you are running the Database Service on an EC2 instance, you may use the EC2 Instance Metadata Service method. Otherwise, you must use environment variables:
- Instance Metadata Service
- Environment Variables
Teleport will detect when it is running on an EC2 instance and use the Instance Metadata Service to fetch credentials.
The EC2 instance should be configured to use an EC2 instance profile. For more information, see: Using Instance Profiles.
Teleport's built-in AWS client reads credentials from the following environment variables:
AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
AWS_DEFAULT_REGION
When you start the Database Service, the service reads environment variables from a
file at the path /etc/default/teleport
. Obtain these credentials from your
organization. Ensure that /etc/default/teleport
has the following content,
replacing the values of each variable:
AWS_ACCESS_KEY_ID=00000000000000000000
AWS_SECRET_ACCESS_KEY=0000000000000000000000000000000000000000
AWS_DEFAULT_REGION=<YOUR_REGION>
Have multiple sources of AWS credentials?
Teleport's AWS client loads credentials from different sources in the following order:
- Environment Variables
- Shared credentials file
- Shared configuration file (Teleport always enables shared configuration)
- EC2 Instance Metadata (credentials only)
While you can provide AWS credentials via a shared credentials file or shared
configuration file, you will need to run the Database Service with the AWS_PROFILE
environment variable assigned to the name of your profile of choice.
If you have a specific use case that the instructions above do not account for, consult the documentation for the AWS SDK for Go for a detailed description of credential loading behavior.
Teleport can bootstrap IAM permissions for the Database Service based on its
configuration using the teleport db configure bootstrap
command. You can use
this command in automatic or manual mode:
- In automatic mode, Teleport will attempt to create appropriate IAM policies and attach them to the specified IAM identity role. This requires IAM permissions to create and attach IAM policies.
- In manual mode, Teleport will print required IAM policies. You can then create and attach them manually using the AWS management console.
- Automatic IAM setup
- Manual IAM setup
Use this command to bootstrap the permissions automatically when your Teleport Database Service runs as an IAM role (for example, on an EC2 instance with an attached IAM role).
$ teleport db configure bootstrap -c /etc/teleport.yaml --attach-to-role TeleportRole
Use this command to display required IAM policies which you will then create in your AWS console:
$ teleport db configure bootstrap -c /etc/teleport.yaml --manual --attach-to-role arn:aws:iam::123456789012:role/TeleportRole
Bootstrapping with assume_role_arn in config
When assume_role_arn
is configured for databases or AWS matchers,
teleport db configure bootstrap
will determine permissions required for the
bootstrap target AWS IAM identity using the following logic:
- When the target does not match
assume_role_arn
in any database resource or AWS matcher in the configuration file, the target is assumed to be the Teleport Database Service's AWS IAM identity and permissions are bootstrapped for all the configured static databases and AWS matchers. - When an
--attach-to-role
target matches anassume_role_arn
setting for static databases or AWS matchers in the configuration file, permissions will be bootstrapped only for those static databases or AWS matchers.
You will need to run the bootstrap command once with the Teleport Database
Service's IAM identity as the policy attachment target, and once for each AWS
IAM role that is used for assume_role_arn
.
Step 4/6. Start the Database Service
Configure the Database Service to start automatically when the host boots up by creating a systemd service for it. The instructions depend on how you installed the Database Service.
- Package Manager
- TAR Archive
On the host where you will run the Database Service, enable and start Teleport:
$ sudo systemctl enable teleport
$ sudo systemctl start teleport
On the host where you will run the Database Service, create a systemd service configuration for Teleport, enable the Teleport service, and start Teleport:
$ sudo teleport install systemd -o /etc/systemd/system/teleport.service
$ sudo systemctl enable teleport
$ sudo systemctl start teleport
You can check the status of the Database Service with systemctl status teleport
and view its logs with journalctl -fu teleport
.
Step 5/6. Configure authentication for ElastiCache or MemoryDB users
Configure authentication for your AWS-hosted Redis database. The steps to follow depend on whether you want to enable the Teleport Database Service to use IAM authentication with ElastiCache, IAM authentication with MemoryDB, or authentication based on managing passwords via AWS Secrets Manager:
- ElastiCache IAM user
- MemoryDB IAM user
- Teleport-managed user
To enable Redis ACL, please see Authenticating users with Role-Based Access Control for ElastiCache.
Some additional limitations apply when using IAM authentication - for more information, see: ElastiCache Auth IAM Limits.
There are a few requirements for configuring an ElastiCache IAM-enabled user:
- the user must have identical username and user id properties.
- the user must have authentication mode set to "IAM".
- the user must be attached to an ElastiCache user group.
Create an ElastiCache IAM-enabled user.
The following example creates an ElastiCache user with the access string
on ~* +@all
that represents an active user with access to all available keys
and commands:
$ aws elasticache create-user \
--user-name iam-user-01 \
--user-id iam-user-01 \
--authentication-mode Type=iam \
--engine redis \
--access-string "on ~* +@all"
You may prefer a less permissive access string for your ElastiCache users. For more information about ElastiCache access strings, please see: ElastiCache Cluster RBAC Access String.
Create an ElastiCache user group and attach it to your ElastiCache replication group:
$ aws elasticache create-user-group \
--user-group-id iam-user-group-01 \
--engine redis \
--user-ids default iam-user-01
$ aws elasticache modify-replication-group \
--replication-group-id replication-group-01 \
--user-group-ids-to-add iam-user-group-01
Once the ElastiCache user has been created, verify that the user is configured to satisfy the requirements for IAM authentication:
It is highly recommended to use a different ACL than the preset open-access
ACL which allows all access using the default
user.
If you do not have another MemoryDB ACL yet, create one:
$ aws memorydb create-acl --acl-name my-acl
Make sure the ACL is attached to your MemoryDB cluster:
$ aws memorydb update-cluster --cluster-name my-memorydb --acl-name my-acl
Now create an MemoryDB IAM-enabled user:
$ aws memorydb create-user \
--user-name iam-user-01 \
--authentication-mode Type=iam \
--access-string "on ~* +@all"
The above example creates a MemoryDB user with the access string on ~* +@all
that represents an active user with access to all available keys and commands.
You may prefer a less permissive access string for your MemoryDB users. For more information about access strings, please see: Specifying Permissions Using an Access String.
Then add this user to the ACL attached to your MemoryDB cluster:
$ aws memorydb update-acl --user-names-to-add iam-user-01 --acl-name my-acl
To enable Redis ACL, please see Authenticating users with Role-Based Access Control for ElastiCache and Authenticating users with Access Control Lists for MemoryDB.
Once an ElastiCache or MemoryDB user is created with the desired access, add an
AWS resource tag teleport.dev/managed
with the value true
to this user:
The Database Service will automatically discover this user if it is associated with a registered database. Keep in mind that it may take the Database Service some time (up to 20 minutes) to discover this user once the tag is added.
If you choose not to use the above options, Teleport will not automatically authenticate with the Redis server.
You can either set up a "no password" configuration for your ElastiCache or
MemoryDB user, or manually enter an AUTH
command with the password you have
configured after a successful client connection. However, it is strongly
advised to use one of the first two options or a strong password for better
security.
Step 6/6. Connect
Once the Database Service has started and joined the cluster, log in to see the registered databases:
- Self-Hosted
- Teleport Enterprise Cloud
$ tsh login --proxy=teleport.example.com --user=alice
$ tsh db ls
# Name Description Labels
# --------------------------- --------------------------------------------------------- --------
# my-cluster-mode-elasticache ...
# my-elasticache ...
# my-elasticache-reader ...
# my-memorydb ...
$ tsh login --proxy=mytenant.teleport.sh --user=alice
$ tsh db ls
# Name Description Labels
# --------------------------- --------------------------------------------------------- --------
# my-cluster-mode-elasticache ...
# my-elasticache ...
# my-elasticache-reader ...
# my-memorydb ...
To retrieve credentials for a database and connect to it:
$ tsh db connect --db-user=my-database-user my-elasticache
If flag --db-user
is not provided, Teleport logs in as the default
user.
Now, depending on the authentication configurations, you may need to send an
AUTH
command to authenticate with the Redis server:
- Redis with ACL
- Redis with AUTH token
- Redis without AUTH
The Database Service automatically authenticates Teleport-managed and
IAM-enabled users with the Redis server. No AUTH
command is required
after successful connection.
If you are connecting as a user that is not managed by Teleport and is not
IAM-enabled, the connection normally starts as the default
user.
Now you can authenticate the database user with its password:
AUTH my-database-user <USER_PASSWORD>
Now you can authenticate with the shared AUTH token:
AUTH <SHARED_AUTH_TOKEN>
For Redis deployments without the ACL system or legacy requirepass
directive enabled, no AUTH
command is required.
To log out of the database and remove credentials:
# Remove credentials for a particular database instance.
$ tsh db logout my-elasticache
# Remove credentials for all database instances.
$ tsh db logout
Troubleshooting
Certificate error
If your tsh db connect
error includes the following text, you likely have an RDS database created before July 28, 2020, which presents an X.509 certificate that is incompatible with Teleport:
x509: certificate relies on legacy Common Name field, use SANs instead
AWS provides instructions to rotate your SSL/TLS certificate.
No credential providers error
If you see the error NoCredentialProviders: no valid providers in chain
in Database Service logs then Teleport
is not detecting the required credentials to connect via AWS IAM permissions. Check whether
the credentials or security role has been applied in the machine running the Teleport Database Service.
When running on EKS, this error may occur if the Teleport Database Service cannot access IMDSv2 when the PUT requests hop limit on the worker node instance is set to 1. You can use the following commands to check the hop limit:
$ aws ec2 describe-instances --instance-ids <node-instance-id> | grep HttpPutResponseHopLimit
"HttpPutResponseHopLimit": 1,
See IMDSv2 support for EKS and EKS best practices for more details.
Timeout errors
The Teleport Database Service needs connectivity to your database endpoints. That may require
enabling inbound traffic on the database from the Database Service on the same VPC or routing rules from another VPC. Using the nc
program you can verify connections to databases:
$ nc -zv postgres-instance-1.sadas.us-east-1.rds.amazonaws.com 5432
# Connection to postgres-instance-1.sadas.us-east-1.rds.amazonaws.com (172.31.24.172) 5432 port [tcp/postgresql] succeeded!
Not authorized to perform sts:AssumeRole
The Database Service assumes an IAM role in one of following situations:
- An IAM role is used as
db_user
when accessing AWS services that require IAM roles as database users, such as DynamoDB, Keyspaces, Opensearch, and Redshift Serverless. - The
assume_role_arn
field is specified for the database resources or dynamic resource matchers.
Role chaining
When both of the above conditions are true for a database connection, the
Database Service performs a role chaining by assuming the IAM role specified
assume_role_arn
first then using that IAM role to assume the IAM role for
db_user
.
You may encounter the following error if the trust relationship is not configured properly between the IAM roles:
AccessDenied: User: arn:aws:sts::111111111111:assumed-role/database-service-role/i-* is not authorized to perform: sts:AssumeRole on resource: arn:aws:iam::111111111111:role/database-user-role
To allow IAM Role role1
to assume IAM Role role2
, the following is
generally required:
1. Configure Trust Relationships on role2
role1
or its AWS account should be set as Principal
in role2
's trust
policy.
- Role as principal
- Account as principal
- Cross-account with external-id
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::aws-account-id:role/role1"
},
"Action": "sts:AssumeRole"
}
]
}
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::aws-account-id:root"
},
"Action": "sts:AssumeRole"
}
]
}
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::external-aws-account-id:role/role1"
},
"Action": "sts:AssumeRole",
"Condition": {
"StringEquals": {
"sts:ExternalId": "example-external-id"
}
}
}
]
}
2. Configure Permissions Policies on role1
role1
requires sts:AssumeRole
permissions, for example:
{
"Version": "2012-10-17",
"Statement": [
{
"Action": "sts:AssumeRole",
"Effect": "Allow",
"Resource": "arn:aws:iam::aws-account-id:role/role2"
}
]
}
Note that this policy can be omitted when role1
and role2
are in the same
AWS account and role1
's full ARN is configured as Principal in role2
's
trust policy.
3. Configure Permissions Boundary on role1
role1
also requires sts:AssumeRole
permissions in its boundary policy, for
example:
{
"Version": "2012-10-17",
"Statement": [
{
"Action": "sts:AssumeRole",
"Effect": "Allow",
"Resource": "*"
}
]
}
Note that this is only required when a boundary policy is attached to role1
.
You can test the trust relationship by running this AWS CLI command as role1
:
aws sts assume-role --role-arn arn:aws:iam::111111111111:role/role2 --role-session-name test-trust-relationship
Learn more on how to use trust policies with IAM roles.
Next steps
- Learn how to restrict access to certain users and databases.
- View the High Availability (HA) guide.
- Take a look at the YAML configuration reference.
- See the full CLI reference.