Skip to main content

Deploying Machine ID on GCP

This guide explains how to deploy Machine ID on Google Cloud Platform (GCP) by running the tbot binary and joining it to your Teleport cluster.

On GCP, virtual machines can be assigned a service account. These machines can then request a signed JSON web token from GCP, which allows third parties to verify information about them, including their service accounts, using the GCP public key. The Teleport gcp join method instructs a Machine ID bot to use this service account JWT to prove its identity to the Teleport Auth Service and join your Teleport cluster without using long-lived secrets.

Whilst the guide on this page focuses explicitly on deploying Machine ID on a GCP Virtual Machine, it is also possible to use the gcp join method with workloads running on Google Kubernetes Engine. To do so, you must configure GCP Workload Identity for the cluster and the Kubernetes service account that will be used by the tbot pod. See the Kubernetes platform guide for further guidance on deploying Machine ID as a workload on Kubernetes.

Prerequisites

  • A running Teleport cluster version 16.4.7 or above. If you want to get started with Teleport, sign up for a free trial or set up a demo environment.

  • The tctl admin tool and tsh client tool.

    Visit Installation for instructions on downloading tctl and tsh.

  • To check that you can connect to your Teleport cluster, sign in with tsh login, then verify that you can run tctl commands using your current credentials. For example:
    $ tsh login --proxy=teleport.example.com [email protected]
    $ tctl status
    # Cluster teleport.example.com
    # Version 16.4.7
    # CA pin sha256:abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678abdc1245efgh5678
    If you can connect to the cluster and run the tctl status command, you can use your current credentials to run subsequent tctl commands from your workstation. If you host your own Teleport cluster, you can also run tctl commands on the computer that hosts the Teleport Auth Service for full permissions.
  • A GCP service account you wish to grant access to your Teleport cluster that is not the GCP compute default service account.
  • A GCP Compute Engine VM that you wish to install Machine ID onto that has been configured with the GCP service account.

Step 1/5. Install tbot

This step is completed on the GCP VM.

First, tbot needs to be installed on the VM that you wish to use Machine ID on.

Download and install the appropriate Teleport package for your platform:

Install Teleport on your Linux server:

  1. Assign edition to one of the following, depending on your Teleport edition:

    EditionValue
    Teleport Enterprise Cloudcloud
    Teleport Enterprise (Self-Hosted)enterprise
    Teleport Community Editionoss
  2. Get the version of Teleport to install. If you have automatic agent updates enabled in your cluster, query the latest Teleport version that is compatible with the updater:

    $ TELEPORT_DOMAIN=example.teleport.com
    $ TELEPORT_VERSION="$(curl https://$TELEPORT_DOMAIN/v1/webapi/automaticupgrades/channel/default/version | sed 's/v//')"

    Otherwise, get the version of your Teleport cluster:

    $ TELEPORT_DOMAIN=example.teleport.com
    $ TELEPORT_VERSION="$(curl https://$TELEPORT_DOMAIN/v1/webapi/ping | jq -r '.server_version')"
  3. Install Teleport on your Linux server:

    $ curl https://cdn.teleport.dev/install-v16.4.7.sh | bash -s ${TELEPORT_VERSION} edition

    The installation script detects the package manager on your Linux server and uses it to install Teleport binaries. To customize your installation, learn about the Teleport package repositories in the installation guide.

Step 2/5. Create a Bot

This step is completed on your local machine.

Next, you need to create a Bot. A Bot is a Teleport identity for a machine or group of machines. Like users, bots have a set of roles and traits which define what they can access.

Create bot.yaml:

kind: bot
version: v1
metadata:
# name is a unique identifier for the Bot in the cluster.
name: example
spec:
# roles is a list of roles to grant to the Bot. Don't worry if you don't know
# what roles you need to specify here, the Access Guides will walk you through
# creating and assigning roles to the already created Bot.
roles: []

Make sure you replace example with a unique, descriptive name for your Bot.

Use tctl to apply this file:

$ tctl create bot.yaml

Step 3/5. Create a join token

This step is completed on your local machine.

Create bot-token.yaml:

kind: token
version: v2
metadata:
# name will be specified in the `tbot` to use this token
name: example-bot
spec:
roles: [Bot]
# bot_name should match the name of the bot created earlier in this guide.
bot_name: example
join_method: gcp
gcp:
# allow specifies the rules by which the Auth Server determines if `tbot`
# should be allowed to join.
allow:
- project_ids:
- my-project-123456
service_accounts:
# This should be the full "name" of a GCP service account. The default
# compute service account is not supported.
- my-service-account@my-project-123456.iam.gserviceaccount.com

Replace:

  • my-project-123456 with the ID of your GCP project
  • example with the name of the bot you created in the second step.
  • [email protected] with the email of the service account configured in the previous step. The default compute service account is not supported.

Use tctl to apply this file:

$ tctl create -f bot-token.yaml

Step 4/5. Configure tbot

This step is completed on the GCP VM.

Create /etc/tbot.yaml:

version: v2
proxy_server: example.teleport.sh:443
onboarding:
join_method: gcp
token: example-bot
storage:
type: memory
# outputs will be filled in during the completion of an access guide.
outputs: []

Replace:

  • example.teleport.sh:443 with the address of your Teleport Proxy or Auth Server. Prefer using the address of a Teleport Proxy.
  • example-bot with the name of the token you created in the second step.

Now, you must decide if you want to run tbot as a daemon or in one-shot mode.

In daemon mode, tbot runs continually, renewing the short-lived credentials for the configured outputs on a fixed interval. This is often combined with a service manager (such as systemd) in order to run tbot in the background. This is the default behaviour of tbot.

In one-shot mode, tbot generates short-lived credentials and then exits. This is useful when combining tbot with scripting (such as in CI/CD) as it allows further steps to be dependent on tbot having succeeded. It is important to note that the credentials will expire if not renewed and to ensure that the TTL for the certificates is long enough to cover the length of the CI/CD job.

Configuring tbot as a daemon

By default, tbot will run in daemon mode. However, this must then be configured as a service within the service manager on the Linux host. The service manager will start tbot on boot and ensure it is restarted if it fails. For this guide, systemd will be demonstrated but tbot should be compatible with all common alternatives.

Use tbot install systemd to generate a systemd service file:

$ tbot install systemd \
--write \
--config /etc/tbot.yaml \
--user teleport \
--group teleport \
--anonymous-telemetry

Ensure that you replace:

  • teleport with the name of Linux user you wish to run tbot as.
  • /etc/tbot.yaml with the path to the configuration file you have created.

You can omit --write to print the systemd service file to the console instead of writing it to disk.

--anonymous-telemetry enables the submission of anonymous usage telemetry. This helps us shape the future development of tbot. You can disable this by omitting this.

Next, enable the service so that it will start on boot and then start the service:

$ sudo systemctl daemon-reload
$ sudo systemctl enable tbot
$ sudo systemctl start tbot

Check the service has started successfully:

$ sudo systemctl status tbot

Configuring tbot for one-shot mode

To use tbot in one-shot mode, modify /etc/tbot.yaml to add oneshot: true:

version: v2
oneshot: true
auth_server: ...

Now, you should test your tbot configuration. When started, several log messages will be emitted before it exits with status 0:

$ export TELEPORT_ANONYMOUS_TELEMETRY=1
$ tbot start -c /etc/tbot.yaml

TELEPORT_ANONYMOUS_TELEMETRY enables the submission of anonymous usage telemetry. This helps us shape the future development of tbot. You can disable this by omitting this.

Step 5/5. Configure outputs

You have now prepared the base configuration for tbot. At this point, it identifies itself to the Teleport cluster and renews its own credentials but does not output any credentials for other applications to use.

Follow one of the access guides to configure an output that meets your access needs.

Next steps