
July 2021

A Practical Guide to Secure SSH Access

A Teleport Tech Paper

Table of Contents

Introduction 3

Chapter 1 - Choosing the right encryption 4

Encryption within the SSH protocol 4

Negotiation & connection 4

Authentication 5

Asymmetric encryption algorithms 7

RSA: Integer factorization 7

DSA: Discrete logarithm problem & modular exponentiation 8

ECDSA & EdDSA: Elliptic curve discrete logarithm problem 8

Comparing encryption algorithms 8

RSA 9

DSA 10

Choosing the encryption algorithm 11

ECDSA & EdDSA 11

Chapter 2 - Reducing your attack surface with an SSH proxy 13

SSH jump server definition 13

Two approaches to setting up an SSH jump server 13

Assumptions made in the two examples below 14

OpenSSH 14

© Teleport, 2021 | goTeleport.com

https://goteleport.com/

Teleport 16

Choosing OpenSSH or Teleport 18

Chapter 3 - Using industry best practices 19

SSH certificates 19

Issuing host certificates (to authenticate hosts to users) 21

Configuring SSH to use host certificates 23

Issuing user certificates (to authenticate users to hosts) 24

Configuring SSH for user certificate authentication 26

Checking logs 26

Enforce the use of a bastion host 27

Add 2-factor authentication to your SSH logins 29

Install google-authenticator 30

Configure PAM for 2-factor authentication 31

Configure SSH for 2-factor authentication 31

Test it out 32

Conclusion 33

© Teleport, 2021 | goTeleport.com

https://goteleport.com/

Introduction

There’s no denying that Secure Shell Protocol (SSH) is the de facto tool for Linux server

administration, but is it truly secure? While SSH is widely supported, fairly straightforward to use,

and was built with security in mind, it’s far from perfect.

SSH, invented in 1995, is a cryptographic network protocol for accessing UNIX machines securely

over an unsecured network. SSH uses a client–server architecture, connecting an SSH client

application with an SSH server. It superseded Telnet protocol by adding encryption to prevent

malicious actors from eavesdropping on network traffic and compromising data confidentiality and

integrity.

Typical applications include remote command and shell execution, but any network endpoint can be

secured with SSH. SSH is very important in cloud computing to solve secure connectivity problems

to cloud-based virtual machines. Many popular products and just about every server deployment

system integrates with SSH somehow. It is universally supported across pretty much all

architectures and distributions, from Raspberry Pis all the way up to massive supercomputer

clusters.

Since SSH is a powerful tool which often grants a lot of access to anyone using it to login into a

server, it’s critical to make your SSH model as secure as possible. This tech paper proposes three

approaches to achieving that, covering each in a chapter:

● Chapter 1 - Choosing the right encryption

● Chapter 2 - Reducing your attack surface area with an SSH proxy

● Chapter 3 - Using industry best practices

| 3 © Teleport, 2021 | goTeleport.com

https://www.openssh.com/
https://en.wikipedia.org/wiki/Cloud_computing
https://goteleport.com/

Chapter 1 - Choosing the right encryption

The “secure” in Secure Shell Protocol comes from the combination of hashing, symmetric

encryption, and asymmetric encryption (also known as public key encryption). In the 25 years since

SSH was created, increasing computer processing power and speeds have necessitated increasingly

complicated low-level algorithms.

This chapter focuses on encryption algorithms used by SSH. The most widely adopted algorithms,

as of 2020, have been RSA, DSA, ECDSA, and EdDSA. RSA and EdDSA provide the best security and

performance. To explain why, below is an overview of how encryption happens within SSH, followed

by an overview of the four algorithms and the criteria for comparing them.

Encryption within the SSH protocol

SSH is used almost universally to connect to shells on remote machines. The most important part of

an SSH session is establishing a secure connection, which occurs via negotiation & connection, and

authentication.

Negotiation & connection

For an SSH session to work, both client and server must support the same SSH protocol version.

● After coming to a consensus on which protocol version to follow, both machines negotiate a

per-session symmetric key to encrypt the connection from the outside. Generating a

symmetric key at this stage, when paired with the asymmetric keys in authentication,

prevents the entire session from being compromised if a key is revealed.

| 4 © Teleport, 2021 | goTeleport.com

https://en.wikipedia.org/wiki/Forward_secrecy
https://goteleport.com/

● Negotiation terms happen through the Diffie-Helman key exchange, (KEX) which creates a

shared secret key to secure the whole data stream by combining the private key of one

party with the public key of the other. (These keys are different from the SSH keys used for

authentication.)

Once the negotiation and connection are complete, a reliable and secure channel between the

client and server has been established.

Figure 1: Shared secret creation

Authentication

During the key exchange (KEX), the client has authenticated the server, but the server has not yet

authenticated the client. In most cases, asymmetric — or public-key — authentication is used by the

client. This method involves two keys, a public and private key. Either can be used to encrypt a

message, but the other must be used to decrypt:

● Data encrypted with the public key can only be decrypted with the private key

● Data encrypted with the private key can only be decrypted with the public key.

| 5 © Teleport, 2021 | goTeleport.com

https://www.youtube.com/watch?v=NmM9HA2MQGI
https://goteleport.com/

SSH public key authentication relies on asymmetric cryptographic algorithms that generate a pair

of separate keys (a key pair), one "private" and the other "public". SSH Keys provide a level of

authorization that can only be fulfilled by those who have ownership of the private key associated

with the public key on the server.

If Bob encrypts a message with Alice’s public key, only Alice’s private key can decrypt the message.

This principle is what allows the SSH protocol to authenticate identity.

Figure 2: Only Alice’s private key can decrypt a message signed with Alice’s public key

If Alice (client) can decrypt Bob’s (server) message, then it proves Alice is in possession of the paired

private key. This is, in theory, how SSH keys authentication should work. Yet with the dynamic

nature of infrastructure today, SSH keys are increasingly shared or managed improperly,

compromising their integrity.

| 6 © Teleport, 2021 | goTeleport.com

https://en.wikipedia.org/wiki/Public-key_cryptography#/media/File:Public_key_encryption.svg
https://goteleport.com/blog/ssh-key-management/
https://goteleport.com/

Asymmetric encryption algorithms

What makes asymmetric encryption powerful is that a private key can be used to derive a paired

public key, but not the other way around. This principle is core to public-key authentication. If Alice

had used a weak encryption algorithm that could be brute-forced by today’s processing capabilities,

a third party could derive Alice’s private key using her public key. Protecting against a threat like

this requires careful selection of the right encryption algorithm.

Three classes of algorithms are commonly used for asymmetric encryption:

1. RSA

2. DSA

3. Elliptic curve based algorithms.

Let’s take a closer look at the mathematics behind each to determine its strength and integrity.

RSA: Integer factorization

First used in 1978, the RSA cryptography is based on the belief that factoring large semi-prime

numbers is difficult by nature. Given that no general-purpose formula has been found to factor a

compound number into its prime factors, there is a direct relationship between the size of the

factors chosen and the time required to compute the solution. In other words, given a number

n=p*q where p and q are sufficiently large prime numbers, it can be assumed that anyone who can

factor n into its component parts is the only party that knows the values of p and q. The same logic

exists for public and private keys. In fact, p & q are necessary variables for the creation of a private

key, and n is a variable for the subsequent public key.

| 7 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

DSA: Discrete logarithm problem & modular exponentiation

DSA follows a similar schema to RSA with public/private keypairs that are mathematically related.

What makes DSA different from RSA is that DSA uses a different algorithm. It solves an entirely

different problem using different elements, equations, and steps. The use of a randomly generated

number, m, is used with signing a message along with a private key, k. This number m must be kept

private.

ECDSA & EdDSA: Elliptic curve discrete logarithm problem

Algorithms using elliptic curves are also based on the assumption that there is no generally efficient

solution to solving a discrete log problem. However, ECDSA/EdDSA and DSA differ in that DSA

uses a mathematical operation known as modular exponentiation while ECDSA/EdDSA uses elliptic

curves. The computational complexity of the discrete log problem allows both classes of algorithms

to achieve the same level of security as RSA with significantly smaller keys.

Comparing encryption algorithms

Four main criteria guide the right algorithm choice:

● Implementation - Can you use a pre-existing library?

● Compatibility - Are there SSH clients that do not support a method?

● Performance - How long will it take to generate a sufficiently secure key?

● Security - Can the public key be derived from the private key?

| 8 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

RSA

Implementation RSA libraries can be found for all major languages, including in-depth libraries

(JS, Python, Go, Rust, C).

Compatibility Usage of SHA-1 (OpenSSH) or public keys under 2048-bits may be

unsupported.

Performance Larger keys require more time to generate.

Security Specialized algorithms like Quadratic Sieve and General Number Field Sieve

exist to factor integers with specific qualities.

Time has been RSA’s greatest ally and greatest enemy. First published in 1977, RSA has the widest

support across all SSH clients and languages and has truly stood the test of time as a reliable key

generation method. Subsequently, it has also been subject to Moore’s Law for decades and key

bit-length has grown in size. According to NIST standards, achieving 128-bit security requires a key

with length 3072 bits whereas other algorithms use smaller keys. Bit security measures the number

of trials required to brute-force a key. 128 bit security means 2128 trials to break.

| 9 © Teleport, 2021 | goTeleport.com

https://gist.github.com/jo/8619441
https://cryptography.io/en/latest/
https://golang.org/pkg/crypto/rsa/
https://docs.rs/rsa/0.3.0/rsa/
https://www.libtom.net/LibTomCrypt/
https://www.openssh.com/txt/release-8.3
https://mathworld.wolfram.com/QuadraticSieve.html
https://en.wikipedia.org/wiki/General_number_field_sieve
https://goteleport.com/

DSA

Implementation DSA was adopted by FIPS-184 in 1994. It has ample representation in major

crypto libraries, similar to RSA.

Compatibility While DSA enjoys support for PuTTY-based clients, OpenSSH 7.0 disables DSA

by default.

Performance Significant improvement in key generation times to achieve comparable security

strengths, though recommended bit-length is the same as RSA.

Security DSA requires the use of a randomly generated unpredictable and secret value

that, if discovered, can reveal the private key.

In DSA, the use of a randomly generated number, m, is used with signing a message along with a

private key, k. This number m must be kept privately. The value m is meant to be a nonce, which is a

unique value included in many cryptographic protocols. However, the additional conditions of

unpredictability and secrecy makes the nonce more akin to a key, and therefore extremely

important. Not only is it difficult to ensure true randomness within a machine, but improper

implementation can break encryption.

| 10 © Teleport, 2021 | goTeleport.com

https://en.wikipedia.org/wiki/Comparison_of_cryptography_libraries
https://en.wikipedia.org/wiki/Comparison_of_cryptography_libraries
https://www.openssh.com/legacy.html
https://security.stackexchange.com/questions/97411/significance-of-the-difference-between-dsa-and-rsa-in-signature-verifying-speed
https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/
https://blog.cloudflare.com/ensuring-randomness-with-linuxs-random-number-generator/
https://goteleport.com/

Choosing the encryption algorithm

Given the above, the choice is between RSA 2048⁄4096 and Ed25519, and the trade-off is between

performance and compatibility:

● RSA is universally supported among SSH clients.

● EdDSA performs much faster and provides the same level of security with significantly

smaller keys.

Ultimately, here’s what really matters regarding that algorithm choice, in the words of Peter

Ruppel: “The short answer to this is: as long as the key strength is good enough for the foreseeable

future, it doesn’t really matter. Because here we are considering a signature for authentication

within an SSH session. The cryptographic strength of the signature just needs to withstand the

current, state-of-the-art attacks.”

ECDSA & EdDSA

ECDSA is an elliptic curve implementation of DSA. Functionally, where RSA and DSA require key

lengths of 3072 bits to provide 128 bits of security, ECDSA can accomplish the same with only

256-bit keys. However, ECDSA relies on the same level of randomness as DSA, so the only gain is

speed and length, not security.

In response to the desired speeds of elliptic curves and the undesired security risks, another class

of curves has gained some notoriety. EdDSA solves the same discrete log problem as DSA/ECDSA,

but uses a different family of elliptic curves known as the Edwards Curve (EdDSA uses a Twisted

Edwards Curve). While offering slight advantages in speed over ECDSA, its popularity comes from

an improvement in security. Rather than relying on a random number for the nonce value, EdDSA

generates a nonce deterministically as a hash making it collision-resistant.

Taking a step back, the use of elliptic curves does not automatically guarantee some level of

security. Not all curves are the same:

| 11 © Teleport, 2021 | goTeleport.com

https://blog.peterruppel.de/ed25519-for-ssh/
https://blog.peterruppel.de/ed25519-for-ssh/
https://blog.trailofbits.com/2020/06/11/ecdsa-handle-with-care/
https://en.wikipedia.org/wiki/Edwards_curve
https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://goteleport.com/

● Only a few curves have made it past rigorous testing.

● The PKI industry has slowly come to adopt Curve25519 in particular for EdDSA. Put

together that makes the public-key signature algorithm, Ed25519.

Implementation EdDSA is fairly new. Crypto++ and cryptlib do not currently support EdDSA.

Compatibility Compatible with newer clients, Ed25519 has seen the largest adoption among

the Edward Curves, though NIST also proposed Ed448 in their recent draft of

SP 800-186.

Performance Ed25519 is the fastest performing algorithm across all metrics. As with ECDSA,

public keys are twice the length of the desired bit security.

Security EdDSA provides the highest security level compared to key length. It also

improves on the insecurities found in ECDSA.

| 12 © Teleport, 2021 | goTeleport.com

https://safecurves.cr.yp.to/
https://en.wikipedia.org/wiki/Curve25519
https://ed25519.cr.yp.to/
https://en.wikipedia.org/wiki/Crypto%2B%2B#Algorithms
https://en.wikipedia.org/wiki/Cryptlib#Algorithm_support
https://ianix.com/pub/ed25519-deployment.html#ed25519-libraries
https://www.nist.gov/news-events/news/2019/10/digital-signatures-and-elliptic-curve-cryptography-request-comments-draft
https://ed25519.cr.yp.to/
https://goteleport.com/

Chapter 2 - Reducing your attack surface with an SSH

proxy

To secure SSH access, it’s good practice to use a proxy, i.e. a single access point which can forward

clients to destination hosts. An SSH proxy is often called “jump server” or “jump host” or “bastion

host” — which serves as the only gateway for access to your infrastructure, thereby reducing the

size of any potential attack surface.

SSH jump server definition

An SSH jump server is a regular Linux server, accessible from the Internet, which is used as a

gateway to access other Linux machines on a private network using the SSH protocol. Having a

dedicated SSH access point also makes it easier to have an aggregated audit log of all SSH

connections. The jump server name derives from the early days of SSH, when users had to SSH into

a jump host and from there, had to type ssh again to “jump” to a destination host. Today, this can be

done automatically using the ProxyJump option.

Two approaches to setting up an SSH jump server

This chapter will cover setting up an SSH jump server, through two distinct open source projects.

Both are free, easy to install and configure, and are single-binary Linux daemons:

● A traditional SSH jump server using OpenSSH. The advantage of this method is that your

servers already have OpenSSH pre-installed.

● A modern approach using Teleport, a newer open source alternative to OpenSSH. Teleport’s

advantage over OpenSSH is that in addition to SSH it supports other access protocols

(Kubernetes, popular databases, etc) and natively integrates with identity-based access.

| 13 © Teleport, 2021 | goTeleport.com

https://goteleport.com/blog/ssh-bastion-host/
https://goteleport.com/blog/ssh-bastion-host/
https://en.wikipedia.org/wiki/OpenSSH
https://en.wikipedia.org/wiki/Teleport_(open-source_software)
https://goteleport.com/

Having a dedicated SSH jump server (i.e., one that doesn’t host any other publicly accessible

software on it) is a good security practice. In contrast, it is bad practice to allow users to log into a

jump server directly. There are a few reasons why:

● Inadvertently updating the jump server configuration.

● Using the jump server machine for other tasks.

● Making copies of keys used to access destination servers.

When using OpenSSH It is also a good idea to change the default TCP port on the SSH jump server

from 22 to something else, as this can reduce the number of brute force attacks made against the

default port. Teleport does this by default.

Assumptions made in the two examples below

The following walkthroughs for configuring an SSH jump server using the two above-mentioned

open-source projects make the following naming assumptions:

● The example organization domain is example.com

● The DNS name of the jump server is going to be proxy.example.com

It’s also assumed that proxy.example.com is the only machine accessible from the Internet.

OpenSSH

This SSH server comes bundled by default with most Linux distributions, and there’s nearly a 100%

chance you already have it installed. If the server is accessible via proxy.example.com then you can

access other servers behind the same NAT boundary via -J command line flag, i.e. on the client:

$ ssh -J proxy.example.com 10.2.2.1

| 14 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

In the example above, the jump server is used to access another host on an AWS VPC with an

address of 10.2.2.1. So far, this looks pretty easy.

To avoid typing -J proxy.example.com all the time, you can update your client’s SSH configuration

in ~/.ssh/config with the following:

Host 10.2.2.*

ProxyJump proxy.example.com

Now, when a user types ssh 10.2.2.1 their SSH client will not even try to resolve 10.2.2.1

locally, but instead will establish a connection to proxy.example.com which will forward it to

10.2.2.1 within its VPC.

Next, we need to harden the server configuration a bit by disabling interactive SSH sessions on the

jump server for regular users, but leaving it turned on for the administrators. To do this, update the

sshd configuration, usually in /etc/ssh/sshd_config with the following:

Do not let SSH clients do anything except be forwarded to the destination:

PermitTTY no

X11Forwarding no

PermitTunnel no

GatewayPorts no

ForceCommand /sbin/nologin

The example above will work for Debian and its derivatives, we advise to verify the existence of

/sbin/nologin.

This will work for as long as the jump server has accounts for all SSH users, which is inconvenient.

Instead, consider creating a separate user account on the jump server dedicated to “jumping users”.

Let’s call it jumpuser and update the configuration:

| 15 © Teleport, 2021 | goTeleport.com

https://goteleport.com/blog/ssh-config/
https://goteleport.com/

Match User jumpuser

PermitTTY no

X11Forwarding no

PermitTunnel no

GatewayPorts no

ForceCommand /usr/sbin/nologin

And the users will have to update their client SSH configuration with:

Host 10.2.2.*

ProxyJump jumpuser@proxy.example.com

For more information on how to fine-tune SSH jump configuration to your particular situation,

consult man ssh_config and man sshd_config.

Needless to say, the setup above works only when the public SSH keys are properly distributed not

only between clients and the jump server, but also between the clients and the destination servers.

Teleport

Teleport is a much newer SSH server, which was released in 2016. Unlike OpenSSH, Teleport is a

highly opinionated SSH implementation:

● Teleport insists on using an SSH proxy by default, and its SSH proxy has a web-based

interface, allowing users to SSH using a browser.

● Teleport, unlike traditional SSH servers, eliminates the need to maintain “inventories” of

servers, as it offers a live introspection, i.e. you can list all online servers behind a proxy as

shown in this screenshot:

| 16 © Teleport, 2021 | goTeleport.com

https://goteleport.com/blog/comparing-ssh-keys/
https://goteleport.com/teleport/
https://goteleport.com/

Figure 3: Teleport screenshot showing real-time view of all online servers behind a proxy

In addition to having a modern proxy functionality, Teleport offers a few advantages over

traditional SSH:

● Does not use SSH keys and instead defaults to identity-based access via SSH certificates.

This removes the need for key management and makes SSH servers completely stateless

and configuration-free.

● Supports other protocols in addition to SSH, so the same “jump host” can be used to access

other resources behind NAT, such as Windows servers, popular databases, Kubernetes

clusters or even internal applications via HTTP(s).

● Does not rely on Linux users for authentication; instead, Teleport maintains a separate

database of users or can integrate with a single sign-on with other identity providers such

as GitHub, Google Apps, or enterprise options such as Okta and Active Directory.

| 17 © Teleport, 2021 | goTeleport.com

https://goteleport.com/blog/ssh-certificates/
https://goteleport.com/

● Supports role-based access control (RBAC). Teleport extends SSH by allowing users to

have roles.

● Centralized audit log. Teleport natively supports a single unified audit log for the entire

server fleet across all environments.

● Edge deployments. Teleport allows connectivity into servers that are running in untrusted

or public networks. This works because a Teleport SSH server can maintain a permanent

reverse tunnel to a proxy, allowing users to SSH into IoT devices “in the wild”.

Teleport always comes with a proxy (i.e. the same thing as a “jump server”) and there are no special

instructions for setting it up.

Choosing OpenSSH or Teleport

Below are tips on choosing among these two open source projects to set up an SSH jump server:

Use OpenSSH if:

● The number of servers or/and users in your organization is small

● You need a jump host setup quickly and do not have much time to learn new tech

Use Teleport if:

● Your server fleet or the size of your team is growing

● You need to connect to servers located “in the wild”, i.e. not restricted to a single VPC

● You want to unify access across multiple protocols using a single tool.

| 18 © Teleport, 2021 | goTeleport.com

https://goteleport.com/teleport/download/
https://goteleport.com/teleport/docs/quickstart/
https://goteleport.com/

Chapter 3 - Using industry best practices

This chapter, written with OpenSSH users in mind, discusses three industry best practices that can

improve your SSH model’ security without requiring you to deploy a new application or make any

major changes to user experience. These best practices, covered in more detail below, are:

1. Use SSH certificates

2. Enforce the use of bastion hosts

3. Add 2-factor authentication to your SSH logins

SSH certificates

Most people can agree that using public key authentication for SSH is generally better than using

passwords. Nobody ever types in a private key, so it can’t be keylogged or observed over your

shoulder. SSH keys have their own issues, however.

While valid in theory, key-based authentication is probably not the best approach to SSH security in

practice. Indeed, if not properly “managed”, SSH keys can be no safer than passwords. SSH key

management can get complicated because SSH key-based authentication simply does not scale.

Rather than seeking a “SSH key management” solution, it’s best practice to use short-lived,

automatically expiring SSH certificates.

SSH certificates are the next level up from SSH keys. OpenSSH has supported their use since

OpenSSH 5.4 which was released back in 2010. An SSH certificate is simply a public key signed by a

well-known, trusted entity called a certificate authority (“CA”).

With SSH certificates, you generate a certificate authority (CA) and then use this to issue and

cryptographically sign certificates which can authenticate users to hosts, or hosts to users. A

certificate authority is the ultimate grantor of trust in an organization. This means that copying

keys around is no longer necessary; users and servers simply must agree on which CA to trust. You

can generate a keypair using the ssh-keygen command, like this:

| 19 © Teleport, 2021 | goTeleport.com

https://goteleport.com/blog/ssh-key-management/
https://goteleport.com/blog/ssh-certificates/
https://www.openssh.com/txt/release-5.4
https://goteleport.com/blog/ssh-certificates/
https://goteleport.com/blog/ssh-certificates/
https://goteleport.com/

$ ssh-keygen -t rsa -b 4096 -f host_ca -C host_ca

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in host_ca.

Your public key has been saved in host_ca.pub.

The key fingerprint is:

SHA256:tltbnMalWg+skhm+VlGLd2xHiVPozyuOPl34WypdEO0 host_ca

The key's randomart image is:

+---[RSA 4096]----+

| +o.|

| .+..o|

| o.o.+ |

| o o.= E|

| S o o=o |

|+ = +.|

| ..=. %.o.o|

| *o Oo=.+.|

| .oo=ooo+..|

+----[SHA256]-----+

$ ls -l

total 8

-rw-------. 1 gus gus 3381 Mar 19 14:30 host_ca

-rw-r--r--. 1 gus gus 737 Mar 19 14:30 host_ca.pub

The host_ca file is the host CA’s private key and should be protected. Don’t give it out to anyone,

don’t copy it anywhere, and make sure that as few people have access to it as possible. Ideally, it

should live on a machine which doesn’t allow direct access and all certificates should be issued by

an automated process.

In addition, it’s best practice to generate and use two separate CAs - one for signing host

certificates, one for signing user certificates. This is because you don’t want the same processes

that add hosts to your fleet to also be able to add users (and vice versa). Using separate CAs also

means that in the event of a private key being compromised, you only need to reissue the

certificates for either your hosts or your users, not both at once.

| 20 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

As such, we’ll also generate a user_ca with this command:

$ ssh-keygen -t rsa -b 4096 -f user_ca -C user_ca

The user_ca file is the user CA’s private key and should also be protected in the same way as the

host CA’s private key.

Issuing host certificates (to authenticate hosts to users)

In this example, we’ll generate a new host key (with no passphrase), then sign it with our CA. You

can also sign the existing SSH host public key if you’d prefer not to regenerate a new key by copying

the file (/etc/ssh/ssh_host_rsa_key.pub) from the server, signing it on your CA machine, and

then copying it back.

$ ssh-keygen -f ssh_host_rsa_key -N '' -b 4096 -t rsa

$ ls -l

-rw------- 1 ec2-user ec2-user 3247 Mar 17 14:49 ssh_host_rsa_key

-rw-r--r-- 1 ec2-user ec2-user 764 Mar 17 14:49 ssh_host_rsa_key.pub

$ ssh-keygen -s host_ca -I host.example.com -h -n host.example.com -V +52w

ssh_host_rsa_key.pub

Enter passphrase: # the passphrase used for the host CA

Signed host key ssh_host_rsa_key-cert.pub: id "host.example.com" serial 0

for host.example.com valid from 2020-03-16T15:00:00 to 2021-03-15T15:01:37

$ ls -l

-rw------- 1 ec2-user ec2-user 3247 Mar 17 14:49 ssh_host_rsa_key

-rw-r--r-- 1 ec2-user ec2-user 2369 Mar 17 14:50 ssh_host_rsa_key-cert.pub

-rw-r--r-- 1 ec2-user ec2-user 764 Mar 17 14:49 ssh_host_rsa_key.pub

ssh_host_rsa_key-cert.pub

contains the signed host certificate.

| 21 © Teleport, 2021 | goTeleport.com

https://goteleport.com/blog/comparing-ssh-keys/
https://goteleport.com/

Here’s an explanation of the flags used:

● -s host_ca: specifies the filename of the CA private key that should be used for signing.

● -I host.example.com: the certificate’s identity - an alphanumeric string that will identify

the server. I recommend using the server’s hostname. This value can also be used to revoke

a certificate in future if needed.

● -h: specifies that this certificate will be a host certificate rather than a user certificate.

● -n host.example.com: specifies a comma-separated list of principals that the certificate

will be valid for authenticating - for host certificates, this is the hostname used to connect to

the server. If you have DNS set up, you should use the server’s FQDN (for example

host.example.com) here. If not, use the hostname that you will be using in an

~/.ssh/config file to connect to the server.

● -V +52w: specifies the validity period of the certificate, in this case 52 weeks (one

year). Certificates are valid forever by default - expiry periods for host certificates are

highly recommended to encourage the adoption of a process for rotating and replacing

certificates when needed.

To see the options that a given certificate was signed with, use ssh-keygen -L:

$ ssh-keygen -L -f user-key-cert.pub

user-key-cert.pub:

Type: ssh-rsa-cert-v01@openssh.com user certificate

Public key: RSA-CERT

SHA256:egWNu5cUZaqwm76zoyTtktac2jxKktj30Oi/ydrOqZ8

Signing CA: RSA SHA256:tltbnMalWg+skhm+VlGLd2xHiVPozyuOPl34WypdEO0

(using ssh-rsa)

Key ID: "gus@goteleport.com"

Serial: 0

Valid: from 2020-03-19T16:33:00 to 2020-03-20T16:34:54

Principals:

ec2-user

gus

Critical Options: (none)

Extensions:

permit-X11-forwarding

| 22 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

permit-agent-forwarding

permit-port-forwarding

permit-pty

Permit-user-rc

Configuring SSH to use host certificates

You also need to tell the server to use this new host certificate. Copy the three files you just

generated to the server, store them under the /etc/ssh directory, set the permissions to match the

other files there, then add this line to your /etc/ssh/sshd_config file:

HostCertificate /etc/ssh/ssh_host_rsa_key-cert.pub

Once this is done, restart sshd with systemctl restart sshd.

Your server is now configured to present a certificate to anyone who connects. For your local ssh

client to make use of this (and automatically trust the host based on the certificate’s identity), you

will also need to add the CA’s public key to your known_hosts file.

You can do this by taking the contents of the host_ca.pub file, adding @cert-authority

*.example.com to the beginning, then appending the contents to ~/.ssh/known_hosts:

@cert-authority *.example.com ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAACAQDwiOso0Q4W+KKQ4OrZZ1o1X7g3yWcmAJtySILZSwo1GXBKgurV4jm

mBN5RsHetl98QiJq64e8oKX1vGR251afalWu0w/iW9jL0isZrPrmDg/p6Cb6yKnreFEaDFocDhoiIcbUiIm

IWcp9PJXFOK1Lu8afdeKWJA2f6cC4lnAEq4sA/Phg4xfKMQZUFG5sQ/Gj1StjIXi2RYCQBHFDzzNm0Q5uB4

hUsAYNqbnaiTI/pRtuknsgl97xK9P+rQiNfBfPQhsGeyJzT6Tup/KKlxarjkMOlFX2MUMaAj/cDrBSzvSrf

OwzkqyzYGHzQhST/lWQZr4OddRszGPO4W5bRQzddUG8iC7M6U4llUxrb/H5QOkVyvnx4Dw76MA97tiZItSG

zRPblU4S6HMmCVpZTwva4LLmMEEIk1lW5HcbB6AWAc0dFE0KBuusgJp9MlFkt7mZkSqnim8wdQApal+E3p1

3d0QZSH3b6eB3cbBcbpNmYqnmBFrNSKkEpQ8OwBnFvjjdYB7AXqQqrcqHUqfwkX8B27chDn2dwyWb3AdPMg

1+j3wtVrwVqO9caeeQ1310CNHIFhIRTqnp2ECFGCCy+EDSFNZM+JStQoNO5rMOvZmecbp35XH/UJ5IHOkh9

wE5TBYIeFRUYoc2jHNAuP2FM4LbEagGtP8L5gSCTXNRM1EX2gQ== host_ca

The value *.example.com is a pattern match, indicating that this certificate should be trusted for

identifying any host which you connect to that has a domain of *.example.com - such as

| 23 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

host.example.com above. This is a comma-separated list of applicable hostnames for the

certificate, so if you’re using IP addresses or SSH config entries here, you can change this to

something like host1,host2,host3 or 1.2.3.4,1.2.3.5 as appropriate.

Once this is configured, remove any old host key entries for host.example.com in your

~/.ssh/known_hosts file, and start an ssh connection. You should be connected straight to the

host without needing to trust the host key. You can check that the certificate is being presented

correctly with a command like this:

$ ssh -vv host.example.com 2>&1 | grep "Server host certificate"

debug1: Server host certificate: ssh-rsa-cert-v01@openssh.com

SHA256:dWi6L8k3Jvf7NAtyzd9LmFuEkygWR69tZC1NaZJ3iF4, serial 0 ID "host.example.com"

CA ssh-rsa SHA256:8gVhYAAW9r2BWBwh7uXsx2yHSCjY5OPo/X3erqQi6jg valid from

2020-03-17T11:49:00 to 2021-03-16T11:50:21

debug2: Server host certificate hostname: host.example.com

At this point, you could continue by issuing host certificates for all hosts in your estate using your

host CA. The benefit of doing this is twofold: you no longer need to rely on the insecure trust on

first use (TOFU) model for new hosts, and if you ever redeploy a server and therefore change the

host key for a certain hostname, your new host could automatically present a signed host certificate

and avoid the dreaded WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! message.

Issuing user certificates (to authenticate users to hosts)

In this example, we’ll generate a new user key and sign it with our user CA. It’s up to you whether

you use a passphrase or not.

$ ssh-keygen -f user-key -b 4096 -t rsa

$ ls -l

-rw-r--r--. 1 gus gus 737 Mar 19 16:33 user-key.pub

-rw-------. 1 gus gus 3369 Mar 19 16:33 user-key

$ ssh-keygen -s user_ca -I gus@goteleport.com -n ec2-user,gus -V +1d user-key.pub

Enter passphrase: # the passphrase used for the user CA

| 24 © Teleport, 2021 | goTeleport.com

https://goteleport.com/blog/ssh-config/
https://en.wikipedia.org/wiki/Trust_on_first_use
https://en.wikipedia.org/wiki/Trust_on_first_use
https://goteleport.com/

Signed user key user-key-cert.pub: id "gus@goteleport.com" serial 0 for

ec2-user,gus valid from 2020-03-19T16:33:00 to 2020-03-20T16:34:54

$ ls -l

-rw-------. 1 gus gus 3369 Mar 19 16:33 user-key

-rw-r--r--. 1 gus gus 2534 Mar 19 16:34 user-key-cert.pub

-rw-r--r--. 1 gus gus 737 Mar 19 16:33 user-key.pub

user-key-cert.pub contains the signed user certificate. You’ll need both this and the private key

(user-key) for logging in.

Here’s an explanation of the flags used:

● -s user_ca: specifies the CA private key that should be used for signing

● -I gus@goteleport.com: the certificate’s identity, an alphanumeric string that will be

visible in SSH logs when the user certificate is presented. I recommend using the email

address or internal username of the user that the certificate is for - something which will

allow you to uniquely identify a user. This value can also be used to revoke a certificate in

future if needed.

● -n ec2-user,gus: specifies a comma-separated list of principals that the certificate will

be valid for authenticating, i.e. the *nix users which this certificate should be allowed to log

in as. In our example, we’re giving this certificate access to both ec2-user and gus.

● -V +1d: specifies the validity period of the certificate, in this case +1d means 1 day.

Certificates are valid forever by default, so using an expiry period is a good way to limit

access appropriately and ensure that certificates can’t be used for access perpetually.

If you need to see the options that a given certificate was signed with, you can use ssh-keygen -L:

$ ssh-keygen -L -f user-key-cert.pub

user-key-cert.pub:

Type: ssh-rsa-cert-v01@openssh.com user certificate

Public key: RSA-CERT SHA256:egWNu5cUZaqwm76zoyTtktac2jxKktj30Oi/ydrOqZ8

Signing CA: RSA SHA256:tltbnMalWg+skhm+VlGLd2xHiVPozyuOPl34WypdEO0 (using

ssh-rsa)

Key ID: "gus@goteleport.com"

Serial: 0

| 25 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

Valid: from 2020-03-19T16:33:00 to 2020-03-20T16:34:54

Principals:

ec2-user

gus

Critical Options: (none)

Extensions:

permit-X11-forwarding

permit-agent-forwarding

permit-port-forwarding

permit-pty

permit-user-rc

Configuring SSH for user certificate authentication

Once you’ve signed a certificate, you also need to tell the server that it should trust certificates

signed by the user CA. To do this, copy the user_ca.pub file to the server and store it under

/etc/ssh, fix the permissions to match the other public key files in the directory, then add this line

to /etc/ssh/sshd_config:

TrustedUserCAKeys /etc/ssh/user_ca.pub

Once this is done, restart sshd with systemctl restart sshd.

Your server is now configured to trust anyone who presents a certificate issued by your user CA

when they connect. If you have a certificate in the same directory as your private key (specified with

the -i flag, for example ssh -i /home/gus/user-key ec2-user@host.example.com), it

will automatically be used when connecting to servers.

Checking logs

If you look in your server’s sshd log (for example, by running journalctl -u sshd), you will see the

name of the certificate being used for authentication, along with the fingerprint of the signing CA:

| 26 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

sshd[14543]: Accepted publickey for ec2-user from 1.2.3.4 port 53734 ssh2: RSA-CERT

ID gus@goteleport.com (serial 0) CA RSA

SHA256:tltbnMalWg+skhm+VlGLd2xHiVPozyuOPl34WypdEO0

If the user tries to log in as a principal (user) which they do not have permission to use (for example,

their certificate grants ec2-user but they try to use root), you’ll see this error in the logs:

sshd[14612]: error: key_cert_check_authority: invalid certificate

sshd[14612]: error: Certificate invalid: name is not a listed principal

If the certificate being presented has expired, you’ll see this error in the logs:

sshd[14240]: error: key_cert_check_authority: invalid certificate

sshd[14240]: error: Certificate invalid: expired

One way that you could make further use of user certificates is to set up a script which will use your

CA to issue a certificate to log into production servers, valid only for the next two hours. Every use

of this script or process could add logs as to who requested a certificate and embed their email

address into the certificate. After this is done, every time the user uses that certificate to access a

server (regardless of which principal they log in as), their email address will be logged. This can

provide a useful part of an audit trail.

There are many other useful things you can do with SSH certificates, such as forcing a specific

command to be run when presenting a certain certificate, or denying the ability to forward ports,

X11 traffic or SSH agents. Take a look at man ssh-keygen for some ideas.

Enforce the use of a bastion host

Another way to improve your SSH security is to enforce the use of a bastion host - a server which is

specifically designed to be the only gateway for access to your infrastructure. Lessening the size of

| 27 © Teleport, 2021 | goTeleport.com

https://goteleport.com/blog/ssh-bastion-host/
https://goteleport.com/

any potential attack surface through the use of firewalls enables you to keep a better eye on who is

accessing what.

Switching to the use of a bastion host doesn’t have to be an arduous task, especially if you’re using

SSH certificates. By setting up your local ~/.ssh/config file, you can automatically configure all

connections to hosts within a certain domain to go through the bastion.

Here’s a very quick example of how to force SSH access to any host in the example.com domain to

be routed through a bastion host, bastion.example.com:

Host *.example.com

ProxyJump bastion.example.com

IdentityFile ~/user-key

Host bastion.example.com

ProxyJump none

IdentityFile ~/user-key

To make this even simpler, if you add user-key to your local ssh-agent with ssh-add

user-key, you can also remove the IdentityFile entries from the SSH config file.

Once you’re using the bastion host for your connections, you can use iptables (or another *nix

firewall configuration tool of your choosing) on servers behind the bastion to block all other

incoming SSH connections. Here’s a rough example using iptables:

$ iptables -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

$ iptables -A INPUT -p tcp --dport 22 -s <public IP of the bastion> -j

ACCEPT

$ iptables -A INPUT -p tcp --dport 22 -j DROP

It’s a good idea to leave a second SSH session connected to the bastion while running these

commands so that if you inadvertently input the wrong IP address or command, you should still

have working access to the bastion to fix it via the already-established connection.

| 28 © Teleport, 2021 | goTeleport.com

http://example.com/
https://goteleport.com/

Add 2-factor authentication to your SSH logins

Multi-factor authentication makes it more difficult for bad actors to log into your systems by

enforcing the need for two different “factors” or methods to be able to successfully authenticate.

This usually comes down to needing both “something you know” (like a password, or SSH certificate

in our example) and “something you have” (like a token from an app installed on your phone, or an

SMS with a unique code). One other possibility is requiring the use of “something you are” - for

example a fingerprint, or your voice.

Teleport comes with multi-factor authentication built-in and no special configuration is required.

In this chapter we’ll focus on configuring OpenSSH. We’ll install the google-authenticator pluggable

authentication module, which will require users to input a code from the Google Authenticator app

on their phone in order to log in successfully. You can download the app for iOS here and Android

here.

As a general note, it’s always important to consider the user experience when enforcing security

measures. If your measures are too draconian then users may attempt to find ways to defeat and

work around them, which will eventually reduce the overall security of your systems and lead to the

creation of back doors. To give our users a reasonable experience in this example, we are only going

to require 2-factor authentication to be able to log into our bastion host.

Once authenticated there, users should be able to log into other hosts simply by using their valid

SSH certificate. This combination should give an acceptable level of security without interfering too

much with user workflows. With this in mind, however, it is always prudent and appropriate to

enforce extra security measures in specific environments which contain critical production data or

sensitive information.

| 29 © Teleport, 2021 | goTeleport.com

https://en.wikipedia.org/wiki/Pluggable_authentication_module
https://en.wikipedia.org/wiki/Pluggable_authentication_module
https://apps.apple.com/us/app/google-authenticator/id388497605
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://goteleport.com/

Install google-authenticator

On RHEL/CentOS based systems, you can install the google-authenticator module from the EPEL

repository:

$ sudo yum install

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm # for

RHEL/CentOS 7, change for other versions

$ sudo yum install google-authenticator

For Debian/Ubuntu-based systems, this is available as the libpam-google-authenticator

package:

$ sudo apt-get install libpam-google-authenticator

The google-authenticator module has many options you can set which are documented here. In

the interest of saving time, we are going to use some sane defaults in this example: disallow reuse of

the same token twice, issue time-based rather than counter-based codes, and limit the user to a

maximum of three logins every 30 seconds. To set up Google 2-factor authentication with these

settings, a user should run this command:

$ google-authenticator -d -f -t -r 3 -R 30 -W

You can also run google-authenticator with no flags and answer some prompts to set up

interactively if you prefer.

This will output a QR code that the user can scan with the app on their phone, plus some backup

codes which they can use if they lose access to the app. These codes should be stored offline in a

secure location.

Scan the generated QR code for your user now with the Google Authenticator app and make sure

that you have a 6-digit code displayed. If you need to edit or change any settings in future, or

remove the functionality completely, the configuration will be stored under

~/.google_authenticator.

| 30 © Teleport, 2021 | goTeleport.com

https://github.com/google/google-authenticator-libpam/blob/master/man/google-authenticator.1.md
https://goteleport.com/

Configure PAM for 2-factor authentication

To make the system enforce the use of these OTP (one-time password) codes, we’ll first need to edit

the PAM configuration for the sshd service (/etc/pam.d/sshd) and add this line to the end of the

file:

auth required pam_google_authenticator.so nullok

The nullok at the end of this line means that users who don’t have a second factor configured yet

will still be allowed to log in so that they can set one up. Once you have 2-factor authentication set

up for all your users, you should remove nullok from this line to properly enforce the use of a

second factor.

We also need to change the default authentication methods so that SSH won’t prompt users for a

password if they don’t present a 2-factor token. These changes are also made in the

/etc/pam.d/sshd file:

● On RHEL/CentOS-based systems, comment out auth substack password-auth by

adding a # to the beginning of the line: #auth substack password-auth

● On Debian/Ubuntu-based systems, comment out @include common-auth by adding a #

to the beginning of the line: #@include common-auth

Save the /etc/pam.d/sshd file once you’re done.

Configure SSH for 2-factor authentication

We also need to tell SSH to require the use of 2-factor authentication. To do this, we make a couple

of changes to the /etc/ssh/sshd_config file.

Firstly, we need to change ChallengeResponseAuthentication no to

ChallengeResponseAuthentication yes to allow the use of PAM for credentials.

| 31 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

We also need to set the list of acceptable methods for authentication by adding this line to the end

of the file (or editing the line if it already exists):

AuthenticationMethods publickey,keyboard-interactive

This tells SSH that it should require both a public key (which we are going to be satisfying using an

SSH certificate) and a keyboard-interactive authentication (which will be provided and satisfied by

the sshd PAM stack). Save the /etc/ssh/sshd_config file once you’re done.

At this point, you should restart sshd with systemctl restart sshd. Make sure to leave an SSH

connection open so that you can fix any errors if you need to. Restarting SSH will leave existing

connections active, but new connections may not be allowed if there is a configuration problem.

Test it out

Connect to your bastion host directly and you should see a prompt asking you for your 2-factor

code:

$ ssh bastion.example.com

Verification code:

Type the code presented by your Google Authenticator app and your login should proceed

normally.

If you check the sshd log with journalctl -u sshd, you should see a line indicating that your

login succeeded:

Mar 23 16:51:13 ip-172-31-33-142.ec2.internal sshd[29340]: Accepted

keyboard-interactive/pam for gus from 1.2.3.4 port 42622 ssh2

| 32 © Teleport, 2021 | goTeleport.com

https://goteleport.com/

Conclusion

This tech paper covered three practical approaches to securing SSH access:

● Comparing SSH key algorithms (RSA, DSA, ECDSA, or EdDSA) to select the right SSH key;

● Setting up a jump server to reduce your attack surface with through openSSH or through

Teleport

● Adopting industry best practices to improve the security of your SSH model, such as using

SSH certificates, enforcing the use of bastion hosts and adding 2-factor authentication to

your SSH logins

Though SSH is a widely adopted and powerful security tool that protects access to mission-critical

systems, it can become a security liability if improperly managed.

As a newer SSH server built-in with many industry best practices, Teleport (available in both open

source and paid versions) provides a viable alternative. It offers more visibility by allowing a live

view into all online servers behind a proxy, uses secure and flexible SSH certificates rather than SSH

keys, supports other protocols in addition to SSH; and can integrate with a single sign-on with other

identity providers.

| 33 © Teleport, 2021 | goTeleport.com

https://goteleport.com/blog/ssh-certificates/
https://goteleport.com/

